
机器学习基础
南开⼤学⾦融学院

赵博

2024春季

什么是机器学习？

• The science (and art) of programming computers so they
can learn from data.

• [Machine Learning is the] field of study that gives
computers the ability to learn without being explicitly
programmed. —Arthur Samuel, 1959

• A computer program is said to learn from experience E
with respect to some task T and some performance
measure P, if its performance on T, as measured by P,
improves with experience E. — Tom Mitchell, 1997

机器学习 vs. 传统⼈⼯智能
• 传统⼈⼯智能：编程制定规则

• 机器学习：定义⽬标（loss function，⽐如最⼩化MSE），计算机从
数据中学习规则

• 例：识别垃圾邮件。

• 传统⼈⼯智能：观察垃圾邮件特点，⽐如常⻅词：4U, free,
amazing, 优惠，限时，抽奖…，建模。

• 机器学习：标注⼤量垃圾邮件和⾮垃圾邮件，⽽⾮直接对邮件特点
建模。⾃动识别垃圾邮件的特点（在给定的模型空间⾥选择模型）

• 传统⼈⼯智能：

•

• 机器学习：

•

什么是计量经济学？
• 提出模型（根据常识、经济学、⾦融学理论，也即 field knowledge）

• 根据模型的特点设计估计⽅法（Robust errors、GLS、IV、Structural models, GMM、Panel、DID、PSM…）

• 对模型的结果进⾏评价

• ⾸先要符合常识  

• 其次，研究者想表达的故事到底⾯临哪些问题？

• 现代计量经济学经历了“因果识别”的⾰命。

• 本质上：从 structural form —> reduced form

• 模型本身到底对还是不对？⽆法从数据给出的结果中知道

•  

 

 

机器学习 vs. 计量经济学

• Arthur Lewbel:

• Tom Sargent: http://www.elecfans.com/d/748807.html  

• ⾦榕：https://tech.sina.com.cn/it/2018-08-20/doc-
ihhxaafz3934293.shtml

http://www.elecfans.com/d/748807.html
https://tech.sina.com.cn/it/2018-08-20/doc-ihhxaafz3934293.shtml
https://tech.sina.com.cn/it/2018-08-20/doc-ihhxaafz3934293.shtml
https://tech.sina.com.cn/it/2018-08-20/doc-ihhxaafz3934293.shtml

•

Susan Athey:

•

• Hal Varian:

•

• 我的看法：

• 机器学习不完全是只看相关性⽽不看因果联系。

• 机器学习越来越关注因果联系。https://
www.microsoft.com/en-us/research/group/causal-
inference/

• 以前的计量经济学时常混淆因果问题与预测问题，现在逐渐
清晰

• 因果联系问题本身极其复杂，经济学的问题本身很难被证伪

• 现在的LLM(ChatGPT等)是否有“独⽴”意识？

⽤词差别

• Econometrics vs. ML

• Control variables, Covariates vs. Features

• Estimation vs. Training

• …

机器学习类别

• 是否有⼈类监督（打标签）?

• Supervised, Unsupervised, semisupervised,
Reinforcement Learning

• 批量学习(batch learning)还是即时学习(online learning)？

• 以上分类可有交集

Supervised vs.
Unsupervised

• Supervised learning: human labeled desired solutions.

• Classification: spam or ham

• Regression: numerical value is labeled

• Unsupervised learning: no human attached labels.

• Clustering: detect groups

• dimensionality reduction: simplify the data without losing too much
information

• Anomaly detection: detecting unusual credit card transactions

• Association rule learning: supermarket transactions

Semisupervised learning

• Usually lots of unlabeled data, a little bit of labeled data.

• People in photos: detecting people in photos
(unsupervised), needs you to tell it who them are
(supervised)

Reinforcement learning

• The ‘agent’ (learning system), observes the ‘environment’,
perform an ‘action’, and get ‘rewards’.

• must learn a series of ‘actions’ under different
‘environments’, where the ‘actions’ might affect the
‘environment’ in which the ‘agent’ is in.

• AlphaGo

Batch and Online Learning

• Batch learning: the model must be trained using all
available data. When launched, it cannot learn new data.

• If you want to update the system, you need to train
once again with all data.

• Online learning: feed new data sequentially, individually or
by small groups (mini-batches)

• learning rate: how fast should the machine learn?

Bias vs. Variance, Underfit
vs. Overfit

• MSE = Bias^2 + Variance + Irreducible error

• Some confusions in the decomposition

• In econometrics:  

• in ML:

• Bias: wrong assumptions, e.g. assuming linear model
while it is actually nonlinear. Underfit.

• Variance: model’s excessive sensitivity to small variations
in the training data.

• Irreducible error: randomness of the data.

•

评估模型好坏

• 计量经济学：对模型本身的评价只能由field knowledge⽽
来。样本内的显著性。样本外的评估⽐较困难。

• 机器学习：模型在未⻅过的新数据上表现怎么样？

• 关键假设：训练数据和未⻅过的新数据性质相同（iid,
stationarity, etc.）

• 如果data generating process改变，则已有的模型会失效

• Testing and Validating

• Split the data into Training Set and Test Set.

• Within Training Set, further split the data into Reduced
Training and Validation Sets. Why?

• Train on the Reduced Training Sets, tune hyperparameters
on the Validation Set

• Then train on the full training set

• Apply the model to the test set

• Types

• Holdout

• K-Fold

• Leave-one-out

• Time series

• Grid search

• Testing and Validating is tricky when the DGP is ever changing.

The workflow
• Get data

• Exploratory Data Analysis

• Correlations

• Plots

• Clean data

• Define validation strategy

• Feature engineering

• Modelling

• Ensembling

Training models

• Gradient Descent

• Batch Gradient Descent

• Stochastic Gradient Descent

• Mini-batch Gradient Descent

• …

Gradient descent
•

• The computation complexity of inverting an K*K matrix is
about to

• Gradient descent:

• initialize with random values

• improve it bit by bit recursively, until the object function
(MSE) reaches the minimum

̂θ = (XTX)−1 XTy

O(K2.4) O(K3)

̂β

•

•

•

̂θ next
j := ̂θ j − α

∂

∂ ̂θ j

J (̂θ 0, ̂θ 1)

̂θnext = ̂θ − α∇θMSE(̂θ)

Intuition

•

•

•

Batch GD
•

•

•

•

• When updating EACH , we have looked at ALL m observations (), and taking average ().

In other words, we use the whole BATCH of training data at every step. SLOW if m is large.

MSE(X, θ) =
1
m

m

∑
i=1

(θTx(i) − y(i))2

∂
∂θj

MSE(θ) =
2
m

m

∑
i=1

(θTx(i) − y(i)) x(i)
j

∇θMSE(θ) =

∂
∂θ0

MSE(θ)
∂

∂θ1
MSE(θ)

⋮
∂

∂θn
MSE(θ)

=
2
m

XT(Xθ − y)

̂θnext = ̂θ − α∇θMSE(̂θ)

θ XT(Xθ − y)
1
m

Stochastic Gradient
Descent

• Randomly pick one instance (observation) in the training set

• Compute the gradients based only on this single instance

•

• Update

∇θMSE(θ) =

∂
∂θ0

MSE(θ)
∂

∂θ1
MSE(θ)

⋮
∂

∂θn
MSE(θ)

= 2 (θTx(i) − y(i)) x(i)

̂θ

Mini-batch Gradient
Descent

• Each round of updating, look at a small random set of instances called Mini-Batch.

• Some notations that might be a bit confusing:

• iteration: each time you update your coefficient estimates

• batch-size: the size of the instances you choose to look at before updating

• epoch: One epoch means you have looked at all samples once. But it does not necessarily
equal to m, it could be a number defined by yourself.

• Example: 1000 instances

• Divide into 10 batches

• batch-size = 100

• 1 iteration: update once, i.e. uses 100 instances

• 1 epoch: when you have trained the model on all 10 batches

̂θ

Models
• No Free Lunch Theorem

• model: a simplified version of descriptions

• the simplifications are meant to discard superfluous details that are unlikely to
generalize to new instances

• to decide what to be kept, you make assumptions

• Wolpert (1996): if you make absolutely no assumption about the data, then there is no
model dominating other models.

• the only way to know for sure which model is best is to test them all.

• But this is impossible.

• So you have to make assumptions, and evaluate those models that seems to fit
these assumptions

Popular models
• State of the art:

• Linear models: good for sparse high dimensional data

• Tree-based models: very powerful, often to be the
default method for tabular data

• Ensembling

• Image, video, language: Neural Networks (Deep
Learning)

Model Regularization
• A good way to fight against overfitting: constrain the

model in some way.

• Linear Model Examples:

• Ridge Regression: . Use

this loss function during training. Afterwards, use the
original linear model(The loss and the evaluation
metrics are different). : hyperparameter

J(θ) = MSE(θ) + α
1
2

n

∑
i=1

θ2
i

α

• Least Absolute Shrinkage and Selection Operator (Lasso)
Regression:

• Lasso tends to completely eliminate the weights of the
least important features. A kind of feature selection.

• Elastic Net:

J(θ) = MSE(θ) + αΣn
i=1 θi

J(θ) = MSE(θ) + rα
n

∑
i=1

θi +
1 − r

2
αΣn

i=1θ
2
i

• Early stopping

•

Logistic regression in ML

• Loss function (log-likelihood function):

• ,

• Training: gradient descent.

J(θ) = −
1
m

Σm
i=1 [y(i) log (̂p(i)) + (1 − y(i)) log (1 − ̂p(i))]

̂p = σ (xTθ) σ(t) =
1

1 + exp(−t)

∂
∂θj

J(θ) =
1
m

m

∑
i=1

(σ (θTx(i)) − y(i)) x(i)
j

• Multiclass classification: Softmax Regression

• Softmax score for class :

• The estimated probability of belonging to class :

• prediction:

• The loss function: . This is called

Cross Entropy Loss Function, or simply log loss

k sk(x) = xTθ(k)

x k

̂pk = σ(s(x))k =
exp (sk(x))

∑K
j=1 exp (sj(x))

̂y = argmax
k

σ(s(x))k

J(Θ) = −
1
m

Σm
i=1Σ

K
k=1y

(i)
k log (̂p(i)

k)

A short note on the log loss
function

• Shannon (1948). The beginning of Information Theory.

• Bit = 0 or 1.

• Bit = Uncertainty divided by 2.

• Entropy:

• Cross Entropy:

• Cross Entropy = Entropy + KL Divergence

H(p) = − Σk pk log2 (pk)
H(p, q) = − Σkpk log2 (qk)

Decision Trees (DT)
• Ask questions sequentially.

•

•

DT: the CART training
algorithm

• First, split the samples in 2 subsets using a single feature and a threshold .

• The algorithm searches and that produces the purest subsets (weighted by

their size):

• : the impurity.

• : number of samples in the left/right subset

• Once it separates the samples into two subsets, it continues to search in the subsets.

• It stops when either it reaches the maximum depth, or if it cannot find a split that will
reduce impurity.

• The optimal tree is not guaranteed.

k tk

k tk
J (k, tk) =

mleft
m

Gleft +
mright

m
Gright

G

m

DT: Regularization
• DT is a nonparametric model.

• Nonparametric models may tend to overfit, i.e. fitting very close to the training data as
little (or no) presumptions are made.

• To fight against overfitting, use regularization.

• max_depth: the maximum level of the tree

• min_samples_split: the minimum number of samples a node must have before it can
be split

• min_samples_leaf: the minimum number of samples a leaf node must have

• max_leaf_nodes: maximum number of leaf nodes

• max_features: maximum number of features that are evaluated for splitting at each
node.

• pruning: delete leaf nodes if the impurity improvement it provides is not statistically
significant

•

DT: regression

• J (k, tk) =
mleft

m
MSEleft +

mright
m

MSEright

•

•

DT: Instability

• Sensitive to small variations in data.

• rotation:

• removing just one sample from the iris data:

•

Ensemble methods
• Wisdom of the Crowd. A classical example by Francis Galton:

• In 1908 Galton went to a country fair in Plymouth

• The weight of an ox is being guessed by around 800 people.
The person who guessed closest to the butchered weight of the
ox won a prize.

• After the contest Galton collected the tickets on which the
people wrote their answers. He found that the average number
is 1197 lbs, while the actual weight is 1198 lbs.

• This answer is better than the winner’s answer, or any other
cattle experts at the fair.

Ensemble: Voting

• Random Forest:

• Train a group of Decision Trees on different subset of
the training data.

• Obtain the predictions from all individual trees, and
aggregate them (perhaps by counting the votes for
each class)

• One of the most powerful Machine Learning algorithms

•

• Even each algorithm is weak (slightly better than random
guess), ensembling can make it strong.

• Ensembling work best when the classifiers are as
independent from one another as possible.

• Hard voting: average counting. Soft voting: average
probability

• Soft voting is generally better, because probability is a
weight of confidence.

Bagging and Pasting
• Use the same algorithm on different random subsets of the

training set.

• Sampling with replacement: Bagging, (Boostrap
aggregating)

• without replacement: Pasting

• After resampling, make predictions by aggregation function
such as voting.

• This can be done in parallel, i.e. with multiple CPU cores or
multiple servers.

Out-of-Bag Validation

• By default, resampling size is for training samples.

• This means that there are about 37% training instances

that are not sampled.

• We can use these unseen samples as the validation set

• Note that these samples are not the same for different
algorithms.

m m

(1 −
1
m

)m ≈ 0.37

Random Patches and
Random Subspaces

• Sampling features: Random Subspaces method

• Sampling both training instances and features: Random
Patches method

Even more randomness

• Random Forest: CART but searching the best feature
among a random set of features (instead of all features)

• Extra-Trees (Extremely Randomized Trees): random
threshold for each feature instead of the best possible
threshold.

• More randomness: bias vs. variance

• Also it means faster training.

Feature Importance

• Feature importance: how much the tree nodes that use
that feature reduce impurity on average across all trees in
the forest. Weighted by the number of training samples in
the node.

• This is especially useful because you can quickly get an
idea about what feature is valuable among all randomly
chosen “experts” (trees)

Boosting

• Train predictors sequentially, each trying to improve
based upon its predecessor’s work

• AdaBoost: pay more attention to the training instances
that the predecessor underfitted. Focus more and more
on the hard cases.

•

Adaboost
• Each sample’s weight is initially set to

•

• The higher , the worse the predictor

•

• : the higher , the lower . The better the predictor, the higher .

w(i) 1
m

rj =

∑m
i = 1

̂y(i)
j ≠ y(i)

w(i)

∑m
i=1 w(i)

 where ̂y(i)
j is the jth predictor's prediction for the ith instance.

rj

αj = η log
1 − rj

rj

αj rj αj αj

• Weight update rule:  
 

• Finally,  

̂y(x) = argmax
k

N

∑
j = 1

̂yj(x) = k

αj where N is the number of predictors.

Gradient Boosting
• Fit new predictors to the residual errors made by the previous predictor

• tree_reg1 = DecisionTreeRegressor(max_depth=2)  
tree_reg1.fit(X, y) 
y2 = y - tree_reg1.predict(X)

• tree_reg2 = DecisionTreeRegressor(max_depth=2)  
tree_reg2.fit(X, y2) 
y3 = y2 - tree_reg2.predict(X)

• tree_reg3 = DecisionTreeRegressor(max_depth=2)  
tree_reg3.fit(X, y3)

• y_pred = sum(tree.predict(X_new) for tree in (tree_reg1, tree_reg2, tree_reg3))

• Early stopping can be useful to determine how many trees are needed.

• Early stopping

• Stochastic Gradient Boosting: choose a random subset of
instances for each tree.

• Check XGBoost

Stacking
• Instead of using simple rules when aggregating, such as

voting, why not using a model to aggregate?

• Split the training data into two subsets.

• Train several models (the more different the better) on the
first subsets. For example, train 3 models, one is linear
regression, one is random forest, etc.

• Evaluate the models on the second subset. For each
instance, we then have 3 predictions.

• Train a meta-model on this data (with 3 features)

Support Vector Machines

• Particularly useful for classification of complex, but small
or medium sized data

• Idea: separate classes with wide margin instead of narrow
ones.

•

• adding new instances off the ‘street’ won’t help.

• The instances on the edge of the street are called ‘support vectors’.

• Sensitive to feature scales

•

Neural Networks

Perceptron

• The step functions “activates” the neuron

• Common step functions:

• Fully connected layer (dense layer): 
 

• This simple structure of perceptrons has some weaknesses. Minsky
and Papert (1969). It cannot solve the simple Exclusive OR (XOR)
problem.

• By then people had put much faith in Neural Networks, this hurts them
a lot. For a long time Neural Networks is neglected. People working in
NN had no much respect among researchers in Artificial Intelligence.

Multi-Layer Perceptron
• But stacking perceptrons can be helpful 

 

Training in NN
• Especially difficult.

• In 1986, Rumelhart, Hinton, Williams (1986) introduced backpropagation.

• The idea:

• For instances in each mini-batch, feed it into the network and computes the output of
each neuron in each layer (just make predictions)

• Measure the output error

• evaluate the last layers’ neuron’s contribution to the error of each output neuron
(gradient descent)

• evaluate the previous hidden layers’ neuron’s contribution to these error contributions
of the last layers’ neurons.

• update the weight of all connections using the error gradients

• so on and so forth

• In order for the gradients to work, the authors replace the
step functions with the logistic function,  
 

• Other popular activation functions:

•

• ReLU:  

σ(z) = 1/(1 + exp(−z))

tanh(z) = 2σ(2z) − 1

ReLU(z) = max(z,0)

Recurrent Neural Nets for
Time Series

h(t) = f (h(t−1), x(t))

Sequence(vector)-to-
Sequence(vector)

• NN for regression: just keep one output neuron with (perhaps) the
identity function as the activation

• NN for classification: for binary problems, use one output neuron
with logistic function as the activation. For multiple classes, use
several neurons.

• Image and videos (non-structural or non-tabular data): Convoluted
Neural Networks

• Natural Language Processing (with a time series component):
Recurrent Neural Networks

• Packages for doing NN: Tensorflow (keras), Pytorch.

What’s next
• Learning by doing

• Check: scikit-learn, XGBoost, Tensorflow (keras),
Pytorch

• Start doing something immediately. For example,
MNIST, IRIS, California housing prices, TITANIC, Image
classification etc.

• Apply to your own problems: predicting stock returns,
stock volatilities, default probabilities, fraud detection,
…

Resources

• www.kaggle.com

• tianchi.aliyun.com

• Stanford’s courses on Computer Vision, Natural Language
Processing, etc.

• Coursera

• …

http://www.kaggle.com
http://tianchi.aliyun.com

