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 The science (and art) of programming computers so they
can learn from data.

e [Machine Learning is the] field of study that gives

computers the ability to learn without being explicitly
programmed. —Arthur Samuel, 1959

A computer program is said to learn from experience E
with respect to some task T and some performance
measure P, if its performance on T, as measured by P,
Improves with experience E. — Tom Mitchell, 1997
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o RIERAAIEFRIRITEITAE (Robust errors. GLS. IV, Structural models, GMM. Panel. DID. PSM...)
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It should be borne in mind that despite the power,
or lack thereof, of hypothesis tests, often conclu-
sions are convincing to a researcher only if sup-
ported by personal experience. Nelson (1995,
p. 141) captures this subjective element of empir-
ical research by noting that “what often really
seems to matter in convincing a male colleague of
the existence of sex discrimination is not studies
with 10000 ‘objective’ observations, but rather a
particular single direct observation: the experi-
ence of his own daughter.”
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What distinguishes an econometrician from a statistician is the former’s preoccupa-
tion with problems caused by violations of statisticians’ standard assumptions; owing
to the nature of economic relationships and the lack of controlled experimentation,
these assumptions are seldom met. Patching up statistical methods to deal with sit-
uations frequently encountered in empirical work in economics has created a large
battery of extremely sophisticated statistical techniques. In fact, econometricians are

often accused of using sledgehammers to crack open peanuts while turning a blind eye
to data deficiencies and the many questionable assumptions required for the successful
application of these techniques. Valavanis has expressed this feeling forcefully:

Econometric theory is like an exquisitely balanced French recipe, spelling out precisely
with how many turns to mix the sauce, how many carats of spice to add, and for how many
milliseconds to bake the mixture at exactly 474 degrees of temperature. But when the
statistical cook turns to raw materials, he finds that hearts of cactus fruit are unavailable, so
he substitutes chunks of cantaloupe; where the recipe calls for vermicelli he uses shredded
wheat; and he substitutes green garment die for curry, ping-pong balls for turtle’s eggs, and,
for Chalifougnac vintage 1883, a can of turpentine. (Valavanis, 1959, p. 83)

How has this state of affairs come about? One reason is that prestige in the econo-
metrics profession hinges on technical expertise rather than on the hard work required
to collect good data:

It 1s the preparation skill of the econometric chef that catches the professional eye, not the
quality of the raw materials in the meal, or the effort that went into procuring them. (Griliches,
1994, p. 14)
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e Arthur Lewbel:
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e Tom Sargent: http://www.elecfans.com/d/748807.html
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Susan Athey:

Key Lessons for Econometrics

Many problems can be decomposed
into predictive and causal parts

o Can use off-the-shelf ML for predictive
parts

Data-driven model selection
o Tailored to econometric goals

Focus on parameters of interest
Define correct criterion for model

Use data-driven model selection where performance
can be evaluated

o While retaining ability to do inference

ML-Inspired Approaches for
Robustness

Validation
o ML always has a test set

o Econometrics can consider alternatives

Ruiz, Athey and Blei (2017) evaluate on days with unusual
prices

o Athey, Blei, Donnelly and Ruiz (2017) evaluate change in
purchases before and after price changes

o Tech firm applications have many A/B tests and algorithm
changes

Other computational approaches for
structural models

o Stochastic gradient descent
o Variational Inference (Bayesian models)

See Sendhil Mullainathan et al (JEP, AER) for
key lessons about prediction in economics

> See also Athey (Science, 2017)



Empirical Economics in Five Years:

My Predictions

Regularization/data-driven model
selection will be the standard for
economic models

Prediction problems better
appreciated

Measurement using ML
techniques an important subfield

Textual analysis standard (already
many examples)

Models will explicitly distinguish
causal parts and predictive parts

Reduced emphasis on sampling
variation

Model robustness emphasized on
equal footing with standard errors

Models with lots of latent
variables



e Hal Varian:

In fact, my standard advice to graduate students
these days is go to the computer science department and take a class in machine
learning. There have been very fruitful collaborations between computer scien-
tists and statisticians in the last decade or so, and I expect collaborations between
computer scientists and econometricians will also be productive in the future.
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e MBFFIATEREREREKREMABRERIKAR,

o NEsF IR RIFERELAR, https://
www.microsoft.com/en-us/research/group/causal-
inference/
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e Fconometrics vs. ML
e Control variables, Covariates vs. Features

e Estimation vs. Training
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e Supervised, Unsupervised, semisupervised,
Reinforcement Learning

o t=F>](batch learning)i®Z2EBNFY=>](online learning)?

o LA EHETHRE

/I



Supervised vs.
Unsupervised

e Supervised learning: human labeled desired solutions.
e (Classification: spam or ham
e Regression: numerical value is labeled

e Unsupervised learning: no human attached labels.
e Clustering: detect groups

e dimensionality reduction: simplify the data without losing too much
information

Anomaly detection: detecting unusual credit card transactions

e Association rule learning: supermarket transactions



Semisupervised learning

e Usually lots of unlabeled data, a little bit of labeled data.

* People in photos: detecting people in photos
(unsupervised), needs you to tell it who them are
(supervised)



Reinforcement learning

* The ‘agent’ (learning system), observes the ‘environment’,
perform an ‘action’, and get ‘rewards’.

e must learn a series of ‘actions’ under different

‘environments’, where the ‘actions’ might affect the
‘environment’ in which the ‘agent’ is In.

e AlphaGo



Batch and Online Learning

e Batch learning: the model must be trained using all
available data. When launched, it cannot learn new data.

e |f you want to update the system, you need to train
once again with all data.

* Online learning: feed new data sequentially, individually or
by small groups (mini-batches)

e |earning rate: how fast should the machine learn?



Bilas vs. Variance, Underfit
vs. Overfit

e MSE = Bias”2 + Variance + Irreducible error
e Some confusions in the decomposition

e |n econometrics:

In econometrics, when estimating a parameter 3, 3 is regarded as some fixed
unknown value. In other words, § is non-random. Therefore, the MSE could
easily be decomposed as the Bias Square plus the Variance of the estimator, 3.
Just write the MSE as

B|(5-5)'| =B|(s-E@) +EB) -5) |, (1)



 in ML:

When doing machine learning, the problem is that we have a RANDOM
variable y = f(z) + ¢, and an estimate of f(z), the f(z). Now the Mean
Square Error is defined differently, which is the difference between y and f (x),
E[(y— f)?]. Now we could write y as f(z)+e¢, so the MSE here is E[(f — f +€)2].
The first part f — f, as in the above, could be decomposed as the Bias Square
and Variance. And the last part, the independent ¢, is the extra part. That’s
why we see an extra Var(e) in the machine learning literature.

The confusion actually lies in the different definition of MSE. In economet-
rics, it is defined as the mean square difference between f and f (using the
machine learning notation), while in machine learning, it is defined as y and f :



e Bias: wrong assumptions, e.g. assuming linear model
while it is actually nonlinear. Underfit.

e Variance: model’s excessive sensitivity to small variations
in the training data.

e |rreducible error: randomness of the data.



Prediction Error

Model Complexity

Total Error

Variance

Bias
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e Testing and Validating
e Split the data into Training Set and Test Set.

e Within Training Set, further split the data into Reduced
Training and Validation Sets. Why?

* Train on the Reduced Training Sets, tune hyperparameters
on the Validation Set

* Then train on the full training set

* Apply the model to the test set



Types
 Holdout

e K-Fold
 [eave-one-out
Time series

Grid search

Testing and Validating is tricky when the DGP is ever changing.



The workflow

Get data
Exploratory Data Analysis
e Correlations
e Plots
e Clean data
Define validation strategy
Feature engineering
Modelling

Ensembling



Training models

Gradient Descent
Batch Gradient Descent
Stochastic Gradient Descent

Mini-batch Gradient Descent



Gradient descent

. 0 = (X'X)" X7y

* The computation complexity of inverting an K*K matrix is
about O(K**) to O(K?)

e (Gradient descent:

e initialize f with random values

* improve it bit by bit recursively, until the object function
(MSE) reaches the minimum
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Intuition

Cost

Learning step

Minimum

Random
initial value
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0

Figure 4-3. Gradient Descent




Cost

Start

=~ 0

Figure 4-4. Learning rate too small




Cost

=~ 0

Start

Figure 4-5. Learning rate too large




Batch GD

m

. MSE(X,0) = 1 Z (07x — y<i))2

o
i MSE(@) = 3 i (gTX(i) — y(i)> x@
z & f
- i}
Y MSE(@)
0
— MSE(0 2
V,MSE@®) = | % D1 _ —X"(X0 -y)
. m
0
|, MSE(G)_
6"Xt = § — ¢ V,MSE(0)
| . T . 1
When updating EACH 0, we have looked at ALL m observations (X' (X6 — y)), and taking average (—).
m

In other words, we use the whole BATCH of training data at every step. SLOW if m is large.



Stochastic Gradient
Descent

Randomly pick one instance (observation) in the training set

Compute the gradients based only on this single instance

V,MSE(#) =

Update 4/9\

30,

30,

9
30,

2 MSE(@#)

2 MSE(®)

MSE(0)

— 9 (HTX(i) _ y(i)) 0



Cost




Mini-batch Gradient
Descent

e Each round of updating, look at a small random set of instances called Mini-Batch.
e Some notations that might be a bit confusing:

e jteration: each time you update your coefficient estimates

e batch-size: the size of the instances you choose to look at before updating

e epoch: One epoch means you have looked at all samples once. But it does not necessarily
equal to m, it could be a number defined by yourself.

e Example: 1000 instances

Divide into 10 batches

batch-size = 100

1 iteration: update @ once, i.e. uses 100 instances

1 epoch: when you have trained the model on all 10 batches



Models

e No Free Lunch Theorem
e model: a simplified version of descriptions

e the simplifications are meant to discard superfluous details that are unlikely to
generalize to new instances

e to decide what to be kept, you make assumptions

e Wolpert (1996): if you make absolutely no assumption about the data, then there is no
model dominating other models.

e the only way to know for sure which model is best is to test them all.

e But this is impossible.

e S0 you have to make assumptions, and evaluate those models that seems to fit
these assumptions



Popular models

e State of the art:

* Linear models: good for sparse high dimensional data

* Tree-based models: very powerful, often to be the
default method for tabular data

* Ensembling

* Image, video, language: Neural Networks (Deep
Learning)



Model Regularization

A good way to fight against overfitting: constrain the
model in some way.

e |Linear Model Examples:

1 n
Ridge Regression: J(#) = MSE(0) + aa 2 6’1.2. Use
i=1
this loss function during training. Afterwards, use the
original linear model(The loss and the evaluation

metrics are different). a:. hyperparameter
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Figure 4-17. A linear model (left) and a polynomial model (right), both with various levels of Ridge

regularization



e | east Absolute Shrinkage and Selection Operator (Lasso)
Regression: J(0) = MSE(@) + aX_, |0,

 Lasso tends to completely eliminate the weights of the
least important features. A kind of feature selection.

e Elastic Net: )
J(0) = MSE(0) + ra Z
i=1

—r
| > aZ?zlé’iz

0,




e Early stopping

- \/alidation set
-==Training set

\ Best model

0 100 200

Epoch

300 400 500




Logistic regression in ML

e Loss function (log-likelihood function):

J(O) = — iz?il [y(i) log (ﬁ(i)) (1 _ y(i)) log (1 —ﬁ(i))]
m

. P=0(x10), 0(0) = 1 + exp(—1)

e Training: gradient descent.
m

2 0)=— Y (o(07x7) =0 ) x0

0 S /



e Multiclass classification: Softmax Regression

Softmax score for class k: s,(X) = x! %

e The estimated probability of x belonging to class k:
CXp (Sk(X))

Zil CXp <Sj(X)>

J

P = 0(s(X)); =

, prediction: y = argmax o(S(X)),
k

k
Cross Entropy Loss Function, or simply log loss

1 . .
. The loss function: J(®) = — —Z?LIleley(‘) log <ﬁ](<l)> This is called
m



A short note on the log loss
function

e Shannon (1948). The beginning of Information Theory.
e Bit=0or1.

e Bit = Uncertainty divided by 2.
e Entropy: H(p) = — 2, p, log, (pk)

o Cross Entropy: H(p, q) = — 2, p, log, (Qk)

 Cross Entropy = Entropy + KL Divergence






Decision Trees (DT)

* Ask questions sequentially.

) (petal length (cm) <= 2.45)
gini = 0.667
samples = 150
value = [50, 50, 50]
\ class = setosa

True \-"alse

petal width (cm) <= 1.75 )
gini=0.5
samples = 100
value = [0, 50, 50]
class = versicolor

/

gini =0.168
samples = 54
value = [0, 49, 5]

class = versicolor

/




Petal width

3.0

2.5
2.0-
1.5 -
1.0 - Depth=0
0.5 e (Depth=2)§

® 800 O .

o0 @ .

2 ..::“ D
o.o L 1 L} 1] .I A 1
0 1 2 3 4 5 6 7

Petal length




DT: the CART training
algorithm

o First, split the samples in 2 subsets using a single feature k and a threshold f,.

 The algorithm searches k and ¢, that produces the purest subsets (weighted by

m Mright
their size):](k, tk) = et Gleft + Z Gright

e G: the impurity.
e m: number of samples in the left/right subset

* Once it separates the samples into two subsets, it continues to search in the subsets.

* [t stops when either it reaches the maximum depth, or if it cannot find a split that will
reduce impurity.

* The optimal tree is not guaranteed.



D1: Regularization

e DT is a nonparametric model.

e Nonparametric models may tend to overfit, i.e. fitting very close to the training data as
little (or no) presumptions are made.

e To fight against overfitting, use regularization.
e max_depth: the maximum level of the tree

e min_samples_split: the minimum number of samples a node must have before it can
be split

e min_samples_leaf: the minimum number of samples a leaf node must have
e max_leaf_nodes: maximum number of leaf nodes

e max_features: maximum number of features that are evaluated for splitting at each
node.

e pruning: delete leaf nodes if the impurity improvement it provides is not statistically
significant
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DT: regression

M eft - MMright
. J (k, tk) - MSEjeft A - MSEyight
max_depth=2 . Lo max_depth=3

— Yy
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” x1<=0.197
mse = 0.098
samples = 200
\value =0.354 y

\F‘alse

(" x1<=0.772 )
mse = 0.074
samples = 156
\value = 0.259 Y

'

mse =0.013 mse = 0.015
samples = 24 samples = 110
value = 0.552 value = 0.111




No restrictions min_samples_leaf=10




DT: Instability

e Sensitive to small variations in data.

e rotation:
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* removing just one sample from the iris data:

3.0

Petal width

Petal length




Ensemble methods

 Wisdom of the Crowd. A classical example by Francis Galton:

In 1908 Galton went to a country fair in Plymouth

The weight of an ox is being guessed by around 800 people.
The person who guessed closest to the butchered weight of the
OX wWOon a prize.

After the contest Galton collected the tickets on which the
people wrote their answers. He found that the average number
Is 1197 lbs, while the actual weight is 1198 lbs.

This answer is better than the winner’s answer, or any other
cattle experts at the farr.



Ensemble: Voting

¢ Random Forest:

e Train a group of Decision Trees on different subset of
the training data.

e Obtain the predictions from all individual trees, and

aggregate them (perhaps by counting the votes for
each class)

* One of the most powerful Machine Learning algorithms
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Regression

SVM
Classifier

Forest Classifier

Random

Other...

tﬁ:’ Diverse
predictors

¥

Ensemble’s prediction
(e.g., majority vote)

4

R

A\
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predictors




Even each algorithm is weak (slightly better than random
guess), ensembling can make it strong.

Ensembling work best when the classifiers are as
independent from one another as possible.

Hard voting: average counting. Soft voting: average
probability

Soft voting is generally better, because probability is a
weight of confidence.



Bagging and Pasting

e Use the same algorithm on different random subsets of the
training set.

 Sampling with replacement: Bagging, (Boostrap
aggregating)

e without replacement: Pasting

o After resampling, make predictions by aggregation function
such as voting.

* This can be done in parallel, i.e. with multiple CPU cores or
multiple servers.



Out-of-Bag Validation

By default, resampling size is m for m training samples.

This means that there are about 37% training instances

|
that are not sampled. (1 — —)" =~ 0.37
m

We can use these unseen samples as the validation set

Note that these samples are not the same for different
algorithms.



Random Patches and
Random Subspaces

e Sampling features: Random Subspaces method

e Sampling both training instances and features: Random

Patches method



Even more randomness

e Random Forest: CART but searching the best feature
among a random set of features (instead of all features)

e Extra-Trees (Extremely Randomized Trees): random
threshold for each feature instead of the best possible

threshold.
e More randomness: bias vs. variance

e Also it means faster training.



Feature Importance

e Feature importance: how much the tree nodes that use
that feature reduce impurity on average across all trees in
the forest. Weighted by the number of training samples in
the node.

* This is especially useful because you can quickly get an
idea about what feature is valuable among all randomly
chosen “experts” (trees)



Boosting

e Train predictors sequentially, each trying to improve
based upon its predecessor’s work

 AdaBoost: pay more attention to the training instances
that the predecessor underfitted. Focus more and more
on the hard cases.
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Adaboost

. |
. Each sample’s weight w is initially set to —
m
Yzt w?
) £ (@) ,
YT NOY .th . , . th -
r; = where y;is the j— predictor's prediction for the 1™ instance.

o J m i
Zi:l w@
e The higher i, the worse the predictor

L=

. o =1nlog ”
J

J the higher i the lower ;. The better the predictor, the higher ;.



 Weight update rule:

fori=1,2,:---,m

(1) o) — ()
| w if y.\/ =y
W(z) < ¢ J

w') exp ( ) if y](’) =y

\

e Finally,

y(X) = argmax Z a; where NV is the number of predictors.

k i=1
yi(x) =k



Gradient Boosting

* Fit new predictors to the residual errors made by the previous predictor
e tree_reg1 = DecisionTreeRegressor(max_depth=2)
tree_reg1.fit(X, y)
y2 =y - tree_reg1.predict(X)
e tree_reg2 = DecisionTreeRegressor(max_depth=2)
tree_reg?2.fit(X, y2)
y3 = y2 - tree_reg2.predict(X)

* tree_reg3 = DecisionTreeRegressor(max_depth=2)
tree_reg3.fit(X, y3)

e y pred = sum(tree.predict(X_new) for tree in (tree_reg1, tree_reg2, tree_reg3))

* Early stopping can be useful to determine how many trees are needed.
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Residuals and tree predictions

Ensemble predictions

0.8

0.8
+ Training set « Training set
— hi(x1) K —— h(x1) = hi(x1) K
c’..: o o. 1 o'..: o o‘ .‘
...o " .o o o. '.o.’ . .’ o °.
0.0 e Tt LN 0.0 e Tt LN
. 35 . . 35 .
—0.4 -0.2 0.0 0.2 0.4 —0.4 -0.2 0.0 0.2 0.4
0.4 + Residuals
+ hy(x1)
0.2 g &+
+ +
e . + o+ + o+
L A% .
0.0 + 4+ T *1 * ++
+t 'i-"+ :+ *+ +
+ +
-0.21 LA *r
.
-0.4 1
-0.4 -0.2 0.0 0.2 0.4 -0.4 -0.2 0.0 0.2 0.4
0.8
0.4 — hs(x;) w h(x1) = h1(x1) + ha(x1) + h3(x7)
*
L]
o: .e.
——
. ‘ ° .
« 3%
0.0 0.2 0.4




e Early stopping

Validation error Best model (55 trees)
0.010 0.8
0.008 -
0.006 -
0.004 - -

Minimum
0.002 A !
|
0.000 | 1 l || || 1
0 20 40 60 80 100 120
Number of trees

e Stochastic Gradient Boosting: choose a random subset of
instances for each tree.

e Check XGBoost



Stacking

Instead of using simple rules when aggregating, such as
voting, why not using a model to aggregate?

Split the training data into two subsets.

Train several models (the more different the better) on the
first subsets. For example, train 3 models, one is linear
regression, one is random forest, etc.

Evaluate the models on the second subset. For each
instance, we then have 3 predictions.

Train a meta-model on this data (with 3 features)
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Fig. 1. Structure of stacking.
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Support Vector Machines

o Particularly useful for classification of complex, but small
or medium sized data

* |dea: separate classes with wide margin instead of narrow
ones.
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. Figure 5-1. Large margin classification

e adding new instances off the ‘street’ won’t help.

e The instances on the edge of the street are called ‘support vectors’.



o Sensitive to feature scales

Unscaled Scaled




Neural Networks
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Perceptron

Output: h_(x) = step(x' w)
g Step function: step(z)
Z Weighted sum: z=x"w
@ @ @), wegns

X, X3 Inputs




 The step functions “activates” the neuron

e Common step functions:

-1 ifz<0
heaviside (z) = ¢ 0ifz< 0 sgn(z) =<0 ifz=20
+1 ifz2>0



 Fully connected layer (dense layer):

Outputs

Bias Neuron
(always outputs 1)

Input Neuron
(passthrough) %4 X5

Inputs

* This simple structure of perceptrons has some weaknesses. Minsky

and Papert (1969). It cannot solve the simple Exclusive OR (XOR)
problem.

* By then people had put much faith in Neural Networks, this hurts them
a lot. For a long time Neural Networks is neglected. People working in
NN had no much respect among researchers in Artificial Intelligence.




Multi-Layer Perceptron

e But stacking perceptrons can be helpful
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Training In NN

e Especially difficult.
e |In 1986, Rumelhart, Hinton, Williams (1986) introduced backpropagation.
e The idea:

e Forinstances in each mini-batch, feed it into the network and computes the output of
each neuron in each layer (just make predictions)

e Measure the output error

e evaluate the last layers’ neuron’s contribution to the error of each output neuron
(gradient descent)

e evaluate the previous hidden layers’ neuron’s contribution to these error contributions
of the last layers’ neurons.

e update the weight of all connections using the error gradients

e sO on and so forth



* |n order for the gradients to work, the authors replace the
step functions with the logistic function,

o(z) = 1/(1 4+ exp(—2))

 Other popular activation functions:
o tanh(z) = 20(27) — 1

e ReLU: ReLU(z) = max(z,0)



Recurrent Neural Nets for
Time Series
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NN for regression: just keep one output neuron with (perhaps) the
identity function as the activation

NN for classification: for binary problems, use one output neuron
with logistic function as the activation. For multiple classes, use
several neurons.

Image and videos (non-structural or non-tabular data): Convoluted
Neural Networks

Natural Language Processing (with a time series component):
Recurrent Neural Networks

Packages for doing NN: Tensorflow (keras), Pytorch.



What's next

e |earning by doing

e Check: scikit-learn, XGBoost, Tensorflow (keras),
Pytorch

e Start doing something immediately. For example,
MNIST, IRIS, California housing prices, TITANIC, Image
classification etc.

* Apply to your own problems: predicting stock returns,
stock volatilities, default probabilities, fraud detection,



Resources

www.kaggle.com

tianchi.aliyun.com

Stanford’s courses on Computer Vision, Natural Language
Processing, etc.

Coursera


http://www.kaggle.com
http://tianchi.aliyun.com

