
机器学习基础
南开大学金融学院

赵博

2025

什么是机器学习？

• The science (and art) of programming computers so they
can learn from data.

• [Machine Learning is the] field of study that gives
computers the ability to learn without being explicitly
programmed. —Arthur Samuel, 1959

• A computer program is said to learn from experience E
with respect to some task T and some performance
measure P, if its performance on T, as measured by P,
improves with experience E. — Tom Mitchell, 1997

机器学习 vs. 传统人工智能
• 传统人工智能：编程制定规则

• 机器学习：定义目标（loss function，比如最小化MSE），计算机从
数据中学习规则

• 例：识别垃圾邮件。

• 传统人工智能：观察垃圾邮件特点，比如常见词：4U, free,
amazing, 优惠，限时，抽奖…，建模。

• 机器学习：标注大量垃圾邮件和非垃圾邮件，而非直接对邮件特点
建模。自动识别垃圾邮件的特点（在给定的模型空间里选择模型）

• 传统人工智能：

•

• 机器学习：

•

什么是计量经济学？
• 提出模型（根据常识、经济学、金融学理论，也即 field knowledge）

• 根据模型的特点设计估计方法（Robust errors、GLS、IV、Structural models, GMM、Panel、DID、PSM…）

• 对模型的结果进行评价

• 首先要符合常识  

• 其次，研究者想表达的故事到底面临哪些问题？

• 现代计量经济学经历了“因果识别”的革命。

• 本质上：从 structural form —> reduced form

• 模型本身到底对还是不对？无法从数据给出的结果中知道

•  

 

 

机器学习 vs. 计量经济学

• Arthur Lewbel:

• Tom Sargent: http://www.elecfans.com/d/748807.html  

• 金榕：https://tech.sina.com.cn/it/2018-08-20/doc-
ihhxaafz3934293.shtml

http://www.elecfans.com/d/748807.html
https://tech.sina.com.cn/it/2018-08-20/doc-ihhxaafz3934293.shtml
https://tech.sina.com.cn/it/2018-08-20/doc-ihhxaafz3934293.shtml
https://tech.sina.com.cn/it/2018-08-20/doc-ihhxaafz3934293.shtml

•

Susan Athey:

•

• Hal Varian:

•

• 我的看法：

• 机器学习不完全是只看相关性而不看因果联系。

• 机器学习越来越关注因果联系。https://www.microsoft.com/en-us/
research/group/causal-inference/

• 以前的计量经济学时常混淆因果问题与预测问题，现在逐渐清晰

• 因果联系问题本身极其复杂，经济学的问题本身很难被证伪

• 现在的LLM(ChatGPT等)是否有“独立”意识？

• 注意“基准”

• 机器学习和计量经济学的最大差别在于：怎样评估结果

评估模型好坏

• 计量经济学：对模型本身的评价只能由field knowledge而
来。样本内的显著性。样本外的评估比较困难。

• 机器学习：模型在未见过的新数据上表现怎么样？

• 关键假设：训练数据和未见过的新数据性质相同（iid,
stationarity, etc.）

• 如果data generating process改变，则已有的模型会失效

• Testing and Validating

• Split the data into Training Set and Test Set.

• Within Training Set, further split the data into Reduced
Training and Validation Sets. Why?

• Train on the Reduced Training Sets, tune hyperparameters
on the Validation Set

• Then train on the full training set

• Apply the model to the test set

• Types

• Holdout

• K-Fold

• Leave-one-out

• Time series

• Grid search

• Testing and Validating is tricky when the DGP is ever changing.

用词差别

• Econometrics vs. ML

• Control variables, Covariates vs. Features

• Estimation vs. Training

• …

机器学习类别

• 是否有人类监督（打标签）?

• Supervised, Unsupervised, semisupervised,
Reinforcement Learning

• 批量学习(batch learning)还是即时学习(online learning)？

• 以上分类可有交集

Supervised vs.
Unsupervised

• Supervised learning: human labeled desired solutions.

• Classification: spam or ham

• Regression: numerical value is labeled

• Unsupervised learning: no human attached labels.

• Clustering: detect groups

• dimensionality reduction: simplify the data without losing too much
information

• Anomaly detection: detecting unusual credit card transactions

• Association rule learning: supermarket transactions

Semisupervised learning

• Usually lots of unlabeled data, a little bit of labeled data.

• People in photos: detecting people in photos
(unsupervised), needs you to tell it who them are
(supervised)

Reinforcement learning

• The ‘agent’ (learning system), observes the ‘environment’,
perform an ‘action’, and get ‘rewards’.

• must learn a series of ‘actions’ under different
‘environments’, where the ‘actions’ might affect the
‘environment’ in which the ‘agent’ is in.

• Not necessarily deep

Batch and Online Learning

• Batch learning: the model must be trained using all
available data. When launched, it cannot learn new data.

• If you want to update the system, you need to train
once again with all data.

• Online learning: feed new data sequentially, individually or
by small groups (mini-batches)

• learning rate: how fast should the machine learn?

Bias vs. Variance, Underfit
vs. Overfit

• MSE = Bias^2 + Variance + Irreducible error

• Some confusions in the decomposition

• In econometrics:  

• in ML:

• Bias: wrong assumptions of the set of models, e.g.
assuming linear model while it is actually nonlinear. Underfit.

• In econometrics, I think it’s very likely that in many cases
the model is misspecified; However, a linear projection is
not necessarily “wrong”. It can still “explain” as a linear
approximation, which is in line with mundane intuition.

• Variance: model’s excessive sensitivity to small variations in
the training data.

• Irreducible error: randomness of the data.

•

The workflow
• Get data

• Exploratory Data Analysis

• Correlations

• Plots

• Clean data

• Define validation strategy

• Feature engineering

• Modelling

• Ensembling

Training models

• Gradient Descent

• Batch Gradient Descent

• Stochastic Gradient Descent

• Mini-batch Gradient Descent

• …

Gradient descent
•

• The computation complexity of inverting an K*K matrix is
about to

• Gradient descent:

• initialize with random values

• improve it bit by bit recursively, until the object function
(MSE) reaches the minimum

̂θ = (XTX)−1 XTy

O(K2.4) O(K3)

̂β

•

•

•

̂θ next
j := ̂θ j − α

∂

∂ ̂θ j

J (̂θ 0, ̂θ 1)

̂θnext = ̂θ − α∇θMSE(̂θ)

Intuition

•

•

•

Batch GD
•

•

•

•

• When updating EACH , we have looked at ALL m observations (), and taking average ().

In other words, we use the whole BATCH of training data at every step. SLOW if m is large.

MSE(X, θ) =
1
m

m

∑
i=1

(θTx(i) − y(i))2

∂
∂θj

MSE(θ) =
2
m

m

∑
i=1

(θTx(i) − y(i)) x(i)
j

∇θMSE(θ) =

∂
∂θ0

MSE(θ)
∂

∂θ1
MSE(θ)

⋮
∂

∂θn
MSE(θ)

=
2
m

XT(Xθ − y)

̂θnext = ̂θ − α∇θMSE(̂θ)

θ XT(Xθ − y)
1
m

Stochastic Gradient
Descent

• Randomly pick one instance (observation) in the training set

• Compute the gradients based only on this single instance

•

• Update

∇θMSE(θ) =

∂
∂θ0

MSE(θ)
∂

∂θ1
MSE(θ)

⋮
∂

∂θn
MSE(θ)

= 2 (θTx(i) − y(i)) x(i)

̂θ

Mini-batch Gradient
Descent

• Each round of updating, look at a small random set of instances called Mini-Batch.

• Some notations that might be a bit confusing:

• iteration: each time you update your coefficient estimates

• batch-size: the size of the instances you choose to look at before updating

• epoch: One epoch means you have looked at all samples once. But it does not necessarily
equal to m, it could be a number defined by yourself.

• Example: 1000 instances

• Divide into 10 batches

• batch-size = 100

• 1 iteration: update once, i.e. uses 100 instances

• 1 epoch: when you have trained the model on all 10 batches

̂θ

Models
• No Free Lunch Theorem

• model: a simplified version of descriptions

• the simplifications are meant to discard superfluous details that are unlikely to
generalize to new instances

• to decide what to be kept, you make assumptions

• Wolpert (1996): if you make absolutely no assumption about the data, then there is no
model dominating other models.

• the only way to know for sure which model is best is to test them all.

• But this is impossible.

• So you have to make assumptions, and evaluate those models that seems to fit
these assumptions

Popular models
• State of the art:

• Linear models: good for sparse high dimensional data

• Tree-based models: very powerful, often to be the
default method for tabular data

• Ensembling

• Image, video, language: Neural Networks (Deep
Learning)

Model Regularization
• A good way to fight against overfitting: constrain the

model in some way.

• Linear Model Examples:

• Ridge Regression: . Use

this loss function during training. Afterwards, use the
original linear model(The loss and the evaluation
metrics are different). : hyperparameter

J(θ) = MSE(θ) + α
1
2

n

∑
i=1

θ2
i

α

• Least Absolute Shrinkage and Selection Operator (Lasso)
Regression:

• Lasso tends to completely eliminate the weights of the
least important features. A kind of feature selection.

• Elastic Net:

J(θ) = MSE(θ) + αΣn
i=1 θi

J(θ) = MSE(θ) + rα
n

∑
i=1

θi +
1 − r

2
αΣn

i=1θ
2
i

• Early stopping

•

Classification problems:
Logistic regression in ML

• Loss function (log-likelihood function):

• ,

• Training: gradient descent.

J(θ) = −
1
m

Σm
i=1 [y(i) log (̂p(i)) + (1 − y(i)) log (1 − ̂p(i))]

̂p = σ (xTθ) σ(t) =
1

1 + exp(−t)

∂
∂θj

J(θ) =
1
m

m

∑
i=1

(σ (θTx(i)) − y(i)) x(i)
j

• Multiclass classification: Softmax Regression

• Softmax score for class :

• The estimated probability of belonging to class :

• prediction:

• The loss function: . This is called

Cross Entropy Loss Function, or simply log loss

k sk(x) = xTθ(k)

x k

̂pk = σ(s(x))k =
exp (sk(x))

∑K
j=1 exp (sj(x))

̂y = argmax
k

σ(s(x))k

J(Θ) = −
1
m

Σm
i=1Σ

K
k=1y

(i)
k log (̂p(i)

k)

A short note on the log loss
function

• Shannon (1948). The beginning of Information Theory.

• Bit = 0 or 1.

• Bit = Uncertainty divided by 2.

• Entropy:

• Cross Entropy:

• Cross Entropy = Entropy + KL Divergence

H(p) = − Σk pk log2 (pk)
H(p, q) = − Σkpk log2 (qk)

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

A recent working paper of mine: Direction is more Important than Speed.  
https://ssrn.com/abstract=5176925

https://ssrn.com/abstract=5176925

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Decision Trees (DT)
• Ask questions sequentially.

•

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

•

DT: the CART training
algorithm

• First, split the samples in 2 subsets using a single feature and a threshold .

• The algorithm searches and that produces the purest subsets (weighted by

their size):

• : the impurity.

• : number of samples in the left/right subset

• Once it separates the samples into two subsets, it continues to search in the subsets.

• It stops when either it reaches the maximum depth, or if it cannot find a split that will
reduce impurity.

• The optimal tree is not guaranteed.

k tk

k tk
J (k, tk) =

mleft
m

Gleft +
mright

m
Gright

G

m

Bo Zhao

Bo Zhao

DT: Regularization
• DT is a nonparametric model.

• Nonparametric models may tend to overfit, i.e. fitting very close to the training data as
little (or no) presumptions are made.

• To fight against overfitting, use regularization.

• max_depth: the maximum level of the tree

• min_samples_split: the minimum number of samples a node must have before it can
be split

• min_samples_leaf: the minimum number of samples a leaf node must have

• max_leaf_nodes: maximum number of leaf nodes

• max_features: maximum number of features that are evaluated for splitting at each
node.

• pruning: delete leaf nodes if the impurity improvement it provides is not statistically
significant

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

•

Bo Zhao

DT: regression

• J (k, tk) =
mleft

m
MSEleft +

mright
m

MSEright

Bo Zhao

•

•

DT: Instability

• Sensitive to small variations in data.

• rotation:

• removing just one sample from the iris data:

•

Ensemble methods
• Wisdom of the Crowd. A classical example by Francis Galton:

• In 1908 Galton went to a country fair in Plymouth

• The weight of an ox is being guessed by around 800 people.
The person who guessed closest to the butchered weight of the
ox won a prize.

• After the contest Galton collected the tickets on which the
people wrote their answers. He found that the average number
is 1197 lbs, while the actual weight is 1198 lbs.

• This answer is better than the winner’s answer, or any other
cattle experts at the fair.

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Ensemble: Voting

• Random Forest:

• Train a group of Decision Trees on different subset of
the training data.

• Obtain the predictions from all individual trees, and
aggregate them (perhaps by counting the votes for
each class)

• One of the most powerful Machine Learning algorithms

•

• Even each algorithm is weak (slightly better than random
guess), ensembling can make it strong.

• Ensembling work best when the classifiers are as
independent from one another as possible.

• Hard voting: average counting. Soft voting: average
probability

• Soft voting is generally better, because probability is a
weight of confidence.

Bagging and Pasting
• Use the same algorithm on different random subsets of the

training set.

• Sampling with replacement: Bagging, (Boostrap
aggregating)

• without replacement: Pasting

• After resampling, make predictions by aggregation function
such as voting.

• This can be done in parallel, i.e. with multiple CPU cores or
multiple servers.

Bo Zhao

Out-of-Bag Validation

• By default, resampling size is for training samples.

• This means that there are about 37% training instances

that are not sampled.

• We can use these unseen samples as the validation set

• Note that these samples are not the same for different
algorithms.

m m

(1 −
1
m

)m ≈ 0.37

Random Patches and
Random Subspaces

• Sampling features: Random Subspaces method

• Sampling both training instances and features: Random
Patches method

Even more randomness

• Random Forest: CART but searching the best feature
among a random set of features (instead of all features)

• Extra-Trees (Extremely Randomized Trees): random
threshold for each feature instead of the best possible
threshold.

• More randomness: bias vs. variance

• Also it means faster training.

Bo Zhao

Feature Importance

• Feature importance: how much the tree nodes that use
that feature reduce impurity on average across all trees in
the forest. Weighted by the number of training samples in
the node.

• This is especially useful because you can quickly get an
idea about what feature is valuable among all randomly
chosen “experts” (trees)

Bo Zhao

Bo Zhao

Boosting

• Train predictors sequentially, each trying to improve
based upon its predecessor’s work

• AdaBoost: pay more attention to the training instances
that the predecessor underfitted. Focus more and more
on the hard cases.

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

•

Bo Zhao

Bo Zhao

Adaboost
• Each sample’s weight is initially set to

•

• The higher , the worse the predictor

•

• : the higher , the lower . The better the predictor, the higher .

w(i) 1
m

rj =

∑m
i = 1

̂y(i)
j ≠ y(i)

w(i)

∑m
i=1 w(i)

 where ̂y(i)
j is the jth predictor's prediction for the ith instance.

rj

αj = η log
1 − rj

rj

αj rj αj αj

• Weight update rule:  
 

• Finally,  

̂y(x) = argmax
k

N

∑
j = 1

̂yj(x) = k

αj where N is the number of predictors.

Gradient Boosting
• Fit new predictors to the residual errors made by the previous predictor

• tree_reg1 = DecisionTreeRegressor(max_depth=2)  
tree_reg1.fit(X, y) 
y2 = y - tree_reg1.predict(X)

• tree_reg2 = DecisionTreeRegressor(max_depth=2)  
tree_reg2.fit(X, y2) 
y3 = y2 - tree_reg2.predict(X)

• tree_reg3 = DecisionTreeRegressor(max_depth=2)  
tree_reg3.fit(X, y3)

• y_pred = sum(tree.predict(X_new) for tree in (tree_reg1, tree_reg2, tree_reg3))

• Early stopping can be useful to determine how many trees are needed.

Bo Zhao

• Early stopping

• Stochastic Gradient Boosting: choose a random subset of
instances for each tree.

• Check XGBoost

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Stacking
• Instead of using simple rules when aggregating, such as

voting, why not using a model to aggregate?

• Split the training data into two subsets.

• Train several models (the more different the better) on the
first subsets. For example, train 3 models, one is linear
regression, one is random forest, etc.

• Evaluate the models on the second subset. For each
instance, we then have 3 predictions.

• Train a meta-model on this data (with 3 features)

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Support Vector Machines

• Particularly useful for classification of complex, but small
or medium sized data

• Idea: separate classes with wide margin instead of narrow
ones.

•

• adding new instances off the ‘street’ won’t help.

• The instances on the edge of the street are called ‘support vectors’.

Bo Zhao

• Sensitive to feature scales

•

Bo Zhao

Bo Zhao

Neural Networks

Perceptron

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

• The step functions “activates” the neuron

• Common step functions:

• Fully connected layer (dense layer): 
 

• This simple structure of perceptrons has some weaknesses. Minsky
and Papert (1969). It cannot solve the simple Exclusive OR (XOR)
problem.

• By then people had put much faith in Neural Networks, this hurts them
a lot. For a long time Neural Networks is neglected. People working in
NN had no much respect among researchers in Artificial Intelligence.

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Multi-Layer Perceptron
• But stacking perceptrons can be helpful 

 

• Cybenko (1989), "Approximation by superpositions of a sigmoidal
function”

• Hornik (1991), "Approximation capabilities of multilayer feedforward
networks”

• Lu et al. (2017), "Expressive Power of Neural Networks”

• Telgarsky (2016), "Benefits of Depth in Neural Networks”

• Eldan and Shamir (2016), "The Power of Depth for Feedforward Neural
Networks”

• Raghu et al. (2017), "On the Expressive Power of Deep Neural Networks”

Bo Zhao

• KEY INNOVATION: The VERY HARD task of constructing X (features), finding
the “correct” functional forms is transformed into —> constructing a neural
networks; wait and see.

• But now the problem is: which neural networks? I.e., can we find a structure
that can approximate EFFICIENTLY (less computational power, fast
convergence, better performance)?

• It becomes a Lego problem. Try fancy (but now it can be vague —
intuitively this structure may capture some features of the data) ideas and
wait and see.

• Still waiting for the next breakthrough: What is real intelligence? I.e., what
makes a human intelligent? How different is human being different from
animals?…

• Neuroscience, biology, and more

Bo Zhao

Bo Zhao

Bo Zhao

Training in NN
• Especially difficult.

• In 1986, Rumelhart, Hinton, Williams (1986) introduced backpropagation.

• The idea:

• For instances in each mini-batch, feed it into the network and computes the output of
each neuron in each layer (just make predictions)

• Measure the output error

• evaluate the last layers’ neuron’s contribution to the error of each output neuron
(gradient descent)

• evaluate the previous hidden layers’ neuron’s contribution to these error contributions
of the last layers’ neurons.

• update the weight of all connections using the error gradients

• so on and so forth

• In order for the gradients to work, the authors replace the
step functions with the logistic function,  
 

• Other popular activation functions:

•

• ReLU:  

σ(z) = 1/(1 + exp(−z))

tanh(z) = 2σ(2z) − 1

ReLU(z) = max(z,0)

• NN for regression: just keep one output neuron with (perhaps) the identity
function as the activation

• NN for classification: for binary problems, use one output neuron with
logistic function as the activation. For multiple classes, use several neurons.

• Image and videos (non-structural or non-tabular data): Convoluted Neural
Networks

• Natural Language Processing (with a time series component): Recurrent
Neural Networks

• Transformer

• Packages for doing NN: Tensorflow (keras), Pytorch.

What’s next
• Learning by doing

• Check: scikit-learn, XGBoost, LightGBM, Tensorflow
(keras), Pytorch

• Start doing something immediately. For example,
MNIST, IRIS, California housing prices, TITANIC, Image
classification etc.

• Apply to your own problems: predicting stock returns,
stock volatilities, default probabilities, fraud detection,
…

Resources

• www.kaggle.com

• Stanford’s courses on Computer Vision, Natural Language
Processing, etc.

• Coursera

• …

http://www.kaggle.com

	ML
	entropy

