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 The science (and art) of programming computers so they
can learn from data.

e [Machine Learning is the] field of study that gives

computers the ability to learn without being explicitly
programmed. —Arthur Samuel, 1959

A computer program is said to learn from experience E
with respect to some task T and some performance
measure P, if its performance on T, as measured by P,
Improves with experience E. — Tom Mitchell, 1997
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o IRUEER (RIFEIR. 2%, EfZFEIL, thAD field knowledge)

o RIERAAIEFRIRITEITAE (Robust errors. GLS. IV, Structural models, GMM. Panel. DID. PSM...)

o IRBPGRHAITIMN

. BEEAER

It should be borne in mind that despite the power,
or lack thereof, of hypothesis tests, often conclu-
sions are convincing to a researcher only if sup-
ported by personal experience. Nelson (1995,
p. 141) captures this subjective element of empir-
ical research by noting that “what often really
seems to matter in convincing a male colleague of
the existence of sex discrimination is not studies
with 10000 ‘objective’ observations, but rather a
particular single direct observation: the experi-
ence of his own daughter.”

o R, MRBERIZNS R REIRMHILE )27

&

o MITEZRFFAN T “BERIRFI"NET,
e AfE_L: M structural form —> reduced form

o REAFARMNEEARI? FTIENBIBELLRIERPIE



What distinguishes an econometrician from a statistician is the former’s preoccupa-
tion with problems caused by violations of statisticians’ standard assumptions; owing
to the nature of economic relationships and the lack of controlled experimentation,
these assumptions are seldom met. Patching up statistical methods to deal with sit-
uations frequently encountered in empirical work in economics has created a large
battery of extremely sophisticated statistical techniques. In fact, econometricians are

often accused of using sledgehammers to crack open peanuts while turning a blind eye
to data deficiencies and the many questionable assumptions required for the successful
application of these techniques. Valavanis has expressed this feeling forcefully:

Econometric theory is like an exquisitely balanced French recipe, spelling out precisely
with how many turns to mix the sauce, how many carats of spice to add, and for how many
milliseconds to bake the mixture at exactly 474 degrees of temperature. But when the
statistical cook turns to raw materials, he finds that hearts of cactus fruit are unavailable, so
he substitutes chunks of cantaloupe; where the recipe calls for vermicelli he uses shredded
wheat; and he substitutes green garment die for curry, ping-pong balls for turtle’s eggs, and,
for Chalifougnac vintage 1883, a can of turpentine. (Valavanis, 1959, p. 83)

How has this state of affairs come about? One reason is that prestige in the econo-
metrics profession hinges on technical expertise rather than on the hard work required
to collect good data:

It 1s the preparation skill of the econometric chef that catches the professional eye, not the
quality of the raw materials in the meal, or the effort that went into procuring them. (Griliches,
1994, p. 14)
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e Arthur Lewbel:

M2ZF > (Machine Learning) , B “"4it% )" (Statistical Learning) , #
[FTZEONAEZERANWR 2P, MIHELFTZELEAER]], XREBEBREEMHLX
BXFIX5, LewbelBBEBAFTINMETRE.

"NBRZ2IERTFFRIERRT, IRFINETENEREH R TEMZEIEK
Z, BELERENEE, IIBFISFERNBEESEMREKR, EUNFFIN
BirRREEXE. E—iiH, NRFIASFENERIR, BFASERFRA
TARBXFENERXAR. BITELFE, BMNBNENANNERXYE, £F
BRXAR, BERTAENAEARXR, AIHASEXMERXA, ZMERXAN
mr=f, B, BFIXRETRIEELZEXRARN, MITELFFHEKRLE
RRR, AEEBRXLERN, "



EER, TEEFERETHHNAR, Lewbel HBEMNBEISEAMRXARXE T A HE
HTTEHENME,

“TELSFRFRNLTEERNOEE, HP—THESRINEZES, SREHNER
NMBFIFERTHELFFENHAR, B, TUARBSHEHAR, APENRF
INBER-THESR, MES—THERERAERLNITELZXFZERE. Eit, B
BFIJEA—TIR, FANTEEFFREARNBA, 2—TRINTAE.
F—TEBRMNOGESRAMRXEANAR, TEENEZRE, HERMF. BT
ERE, XRBRBEERMRARTAINEREZR, ENATELFFNTELFFE
EHFHRIFEERTOAE, HPEFENBUMAEL, MREMNEFEFLAENS
Ro

ETAELZABARBLERD, MERAARANEK, EXRBFFSTNHRES
TR, LEMHNERBEEM, "



e Tom Sargent: http://www.elecfans.com/d/748807.html
BEAHEIX)LRTIR ? ATSEAR—LRETNEE. ATSHESIMEsST
2 RREE7T—MREmERR  HIMERITE. FZHRAXEIEEE | B2
BNALEFBNBERTERBRTE, 5—LHRRE , BXT=15F , SKENFKI
FHHRREES  BEENzEERERER , BFNEZE  FZRETYEZRRE  £8%
HH¥SE , RESEIFMENIES SR , INETRIMEFFHF S A#HE.

e £¥a: https://tech.sina.com.cn/it/2018-08-20/doc-
Ihhxaafz3934293.shtml
EEZEENEERN , fFRER . "XUEMEFERBITFEIR T ARITEIEREFHNERXR |
EMIARAIBRXF. BIERMREIRESENAL (dynamic programming ) , B RABFHRITFEHE.
BRT & AR 'FEY . HE M OREKR PEERATRE. BE. RNUETSEHAERARS
Bk, W, BTEZRNAERENBIEEREE. FILARAIRAIFIERITE , SE R "FrERAIEEF
RSk RREIARY" &2 A EFfIAEREY. "
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https://tech.sina.com.cn/it/2018-08-20/doc-ihhxaafz3934293.shtml
https://tech.sina.com.cn/it/2018-08-20/doc-ihhxaafz3934293.shtml

Susan Athey:

Key Lessons for Econometrics

Many problems can be decomposed
into predictive and causal parts

o Can use off-the-shelf ML for predictive
parts

Data-driven model selection
o Tailored to econometric goals

Focus on parameters of interest
Define correct criterion for model

Use data-driven model selection where performance
can be evaluated

o While retaining ability to do inference

ML-Inspired Approaches for
Robustness

Validation
o ML always has a test set

o Econometrics can consider alternatives

Ruiz, Athey and Blei (2017) evaluate on days with unusual
prices

o Athey, Blei, Donnelly and Ruiz (2017) evaluate change in
purchases before and after price changes

o Tech firm applications have many A/B tests and algorithm
changes

Other computational approaches for
structural models

o Stochastic gradient descent
o Variational Inference (Bayesian models)

See Sendhil Mullainathan et al (JEP, AER) for
key lessons about prediction in economics

> See also Athey (Science, 2017)



Empirical Economics in Five Years:

My Predictions

Regularization/data-driven model
selection will be the standard for
economic models

Prediction problems better
appreciated

Measurement using ML
techniques an important subfield

Textual analysis standard (already
many examples)

Models will explicitly distinguish
causal parts and predictive parts

Reduced emphasis on sampling
variation

Model robustness emphasized on
equal footing with standard errors

Models with lots of latent
variables



e Hal Varian:

In fact, my standard advice to graduate students
these days is go to the computer science department and take a class in machine
learning. There have been very fruitful collaborations between computer scien-
tists and statisticians in the last decade or so, and I expect collaborations between
computer scientists and econometricians will also be productive in the future.
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REXR, https://www.microsoft.com/en-us/
-inference/
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e Testing and Validating
e Split the data into Training Set and Test Set.

e Within Training Set, further split the data into Reduced
Training and Validation Sets. Why?

* Train on the Reduced Training Sets, tune hyperparameters
on the Validation Set

* Then train on the full training set

* Apply the model to the test set



Types
 Holdout

e K-Fold
 [eave-one-out
Time series

Grid search

Testing and Validating is tricky when the DGP is ever changing.
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e Fconometrics vs. ML
e Control variables, Covariates vs. Features

e Estimation vs. Training
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e Supervised, Unsupervised, semisupervised,
Reinforcement Learning

o t=F>](batch learning)i®Z2EBNFY=>](online learning)?

o LA EHETHRE

/I



Supervised vs.
Unsupervised

e Supervised learning: human labeled desired solutions.
e (Classification: spam or ham
e Regression: numerical value is labeled

e Unsupervised learning: no human attached labels.
e Clustering: detect groups

e dimensionality reduction: simplify the data without losing too much
information

Anomaly detection: detecting unusual credit card transactions

e Association rule learning: supermarket transactions



Semisupervised learning

e Usually lots of unlabeled data, a little bit of labeled data.

* People in photos: detecting people in photos
(unsupervised), needs you to tell it who them are
(supervised)



Reinforcement learning

* The ‘agent’ (learning system), observes the ‘environment’,
perform an ‘action’, and get ‘rewards’.

must learn a series of ‘actions’ under different

‘environments’, where the ‘actions’ might affect the
‘environment’ in which the ‘agent’ is In.

* Not necessarily deep



Batch and Online Learning

e Batch learning: the model must be trained using all
available data. When launched, it cannot learn new data.

e |f you want to update the system, you need to train
once again with all data.

* Online learning: feed new data sequentially, individually or
by small groups (mini-batches)

e |earning rate: how fast should the machine learn?



Bilas vs. Variance, Underfit
vs. Overfit

e MSE = Bias”2 + Variance + Irreducible error
e Some confusions in the decomposition

e |n econometrics:

In econometrics, when estimating a parameter 3, 3 is regarded as some fixed
unknown value. In other words, § is non-random. Therefore, the MSE could
easily be decomposed as the Bias Square plus the Variance of the estimator, 3.
Just write the MSE as

B|(5-5)'| =B|(s-E@) +EB) -5) |, (1)



 in ML:

When doing machine learning, the problem is that we have a RANDOM
variable y = f(z) + ¢, and an estimate of f(z), the f(z). Now the Mean
Square Error is defined differently, which is the difference between y and f (x),
E[(y— f)?]. Now we could write y as f(z)+e¢, so the MSE here is E[(f — f +€)2].
The first part f — f, as in the above, could be decomposed as the Bias Square
and Variance. And the last part, the independent ¢, is the extra part. That’s
why we see an extra Var(e) in the machine learning literature.

The confusion actually lies in the different definition of MSE. In economet-
rics, it is defined as the mean square difference between f and f (using the
machine learning notation), while in machine learning, it is defined as y and f :



* Bias: wrong assumptions of the set of models, e.qg.
assuming linear model while it is actually nonlinear. Underfit.

* |n econometrics, | think it’s very likely that in many cases
the model is misspecified; However, a linear projection is
not necessarily “wrong”. It can still “explain” as a linear
approximation, which is in line with mundane intuition.

* Variance: model’s excessive sensitivity to small variations in
the training data.

* Irreducible error: randomness of the data.



Prediction Error

Model Complexity

Total Error

Variance

Bias



The workflow

Get data
Exploratory Data Analysis
e Correlations
e Plots
e Clean data
Define validation strategy
Feature engineering
Modelling

Ensembling



Training models

Gradient Descent
Batch Gradient Descent
Stochastic Gradient Descent

Mini-batch Gradient Descent



Gradient descent

. 0 = (X'X)" X7y

* The computation complexity of inverting an K*K matrix is
about O(K**) to O(K?)

e (Gradient descent:

e initialize f with random values

* improve it bit by bit recursively, until the object function
(MSE) reaches the minimum
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Intuition

Cost

Learning step

Minimum

Random
initial value

D>

0

Figure 4-3. Gradient Descent
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Start
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Figure 4-4. Learning rate too small




Cost

=~ 0

Start

Figure 4-5. Learning rate too large




Batch GD

m

. MSE(X,0) = 1 Z (07x — y<i))2

o
i MSE(@) = 3 i (gTX(i) — y(i)> x@
z & f
- i}
Y MSE(@)
0
— MSE(0 2
V,MSE@®) = | % D1 _ —X"(X0 -y)
. m
0
|, MSE(G)_
6"Xt = § — ¢ V,MSE(0)
| . T . 1
When updating EACH 0, we have looked at ALL m observations (X' (X6 — y)), and taking average (—).
m

In other words, we use the whole BATCH of training data at every step. SLOW if m is large.



Stochastic Gradient
Descent

Randomly pick one instance (observation) in the training set

Compute the gradients based only on this single instance

V,MSE(#) =

Update 4/9\

30,

30,

9
30,

2 MSE(@#)

2 MSE(®)

MSE(0)

— 9 (HTX(i) _ y(i)) 0



Cost




Mini-batch Gradient
Descent

e Each round of updating, look at a small random set of instances called Mini-Batch.
e Some notations that might be a bit confusing:

e jteration: each time you update your coefficient estimates

e batch-size: the size of the instances you choose to look at before updating

e epoch: One epoch means you have looked at all samples once. But it does not necessarily
equal to m, it could be a number defined by yourself.

e Example: 1000 instances

Divide into 10 batches

batch-size = 100

1 iteration: update @ once, i.e. uses 100 instances

1 epoch: when you have trained the model on all 10 batches



Models

e No Free Lunch Theorem
e model: a simplified version of descriptions

e the simplifications are meant to discard superfluous details that are unlikely to
generalize to new instances

e to decide what to be kept, you make assumptions

e Wolpert (1996): if you make absolutely no assumption about the data, then there is no
model dominating other models.

e the only way to know for sure which model is best is to test them all.

e But this is impossible.

e S0 you have to make assumptions, and evaluate those models that seems to fit
these assumptions



Popular models

e State of the art:

* Linear models: good for sparse high dimensional data

* Tree-based models: very powerful, often to be the
default method for tabular data

* Ensembling

* Image, video, language: Neural Networks (Deep
Learning)



Model Regularization

A good way to fight against overfitting: constrain the
model in some way.

e |Linear Model Examples:

1 n
Ridge Regression: J(#) = MSE(0) + aa 2 6’1.2. Use
i=1
this loss function during training. Afterwards, use the
original linear model(The loss and the evaluation

metrics are different). a:. hyperparameter
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Figure 4-17. A linear model (left) and a polynomial model (right), both with various levels of Ridge

regularization



e | east Absolute Shrinkage and Selection Operator (Lasso)
Regression: J(0) = MSE(@) + aX_, |0,

 Lasso tends to completely eliminate the weights of the
least important features. A kind of feature selection.

e Elastic Net: )
J(0) = MSE(0) + ra Z
i=1

—r
| > aZ?zlé’iz

0,




e Early stopping

- \/alidation set
-==Training set

\ Best model

0 100 200

Epoch

300 400 500




Classification problems:
Logistic regression in ML

e Loss function (log-likelihood function):

J(O) = — iz?il [y(i) log (ﬁ(i)) (1 _ y(i)) log (1 —ﬁ(i))]
m

. P=0(x10), 0(0) = 1 + exp(—1)

e Training: gradient descent.
m

2 0)=— Y (o(07x7) =0 ) x0

0 S /



e Multiclass classification: Softmax Regression

Softmax score for class k: s,(X) = x! %

e The estimated probability of x belonging to class k:
CXp (Sk(X))

Zil CXp <Sj(X)>

J

P = 0(s(X)); =

, prediction: y = argmax o(S(X)),
k

k
Cross Entropy Loss Function, or simply log loss

1 . .
. The loss function: J(®) = — —Z?LIleley(‘) log <ﬁ](<l)> This is called
m



A short note on the log loss
function

e Shannon (1948). The beginning of Information Theory.
e Bit=0or1.

e Bit = Uncertainty divided by 2.
e Entropy: H(p) = — 2, p, log, (pk)

o Cross Entropy: H(p, q) = — 2, p, log, (Qk)

 Cross Entropy = Entropy + KL Divergence
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Predicted
Negative Positive /Quwmx/a, )
3 6 [ /
A
Precision
(e.g., 3 out of 4)

Negative

> &

Positive 6- ~ 5 5 5 3
e

Recall
g (e.g., 3 out of 5)

Figure 3-2. An illustrated confusion matrix shows examples of true negatives (top left), false positives (top
right), false negatives (lower left), and true positives (lower right)
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j Various thresholds E

Figure 3-3. In this precision/recall trade-off, images are ranked by their classifier score, and those above
the chosen decision threshold are considered positive; the higher the threshold, the lower the recall, but (in
general) the higher the precision
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A recent working paper of mine: Direction is more Important than Speed.
https://ssrn.com/abstract=5176925

In a typical setting, a predictive model of asset returns can be written as 7; ;+1 = E¢(7i t41) + &it+1,
where E¢(rit+1) = f(zit) and f(-) is some functional form that encapsulates some set of predictors
x; +, generally constructed through economic theory. In this model, the realized excess return r; ;1 is a
continuous variable and the determination of the sign of r; ;4 is not considered a separate issue. However,
the performance of such predictive models is often poor, particularly out-of-sample, as famously argued
by Welch and Goyal (2008) and Goyal, Welch, and Zafirov (2024), sparking widespread debate about
stock return predictability. A common approach to improve model performance, proposed by Campbell
and Thompson (2008), is to set predictions of a negative equity premium to zero, since the expected
equity premium, as compensation for risk, should theoretically be positive. This practice, however,
effectively eliminates the possibility of sign prediction.? Yet, the expectation that the equity premium
should be positive is not entirely synonymous with always predicting the next period’s equity premium to
be positive, especially when “expected” is understood statistically as the average (and its corresponding
“expectation” in the mathematical sense). From a practical perspective, the monthly realized excess
return of the S&P 500 is negative approximately 40% of the time, leading us to view sign prediction as
a meaningful and important topic that does not contradict financial theory.

An example of the interplay of direction and value prediction is the dividend-price channel from
the Campbell-Shiller identity (Campbell and Shiller, 1988a), as articulated by Cochrane (2008): a rising
log(Dividend;/Price;) (logDP, or d; — p;) signals higher returns at ¢+ 1, while a falling logDP indicates

lower returns, i.e.

rie1 =a+ b(dy — pi) + €41, b= 0.10 with annual data, (Equation (1) of Cochrane (2008)).


https://ssrn.com/abstract=5176925

Cochrane (2008) shows that the primary variation in the log dividend-price ratio (d; — p;) stems from
changes in price (P) rather than dividends (D). Noting that price fluctuations are directly linked to the
positivity or negativity of returns, it is evident that a less ambitious inference can be drawn: logDP has
a positive relationship with the sign of returns, such that an increase (decrease) in logDP is more likely

to result in a positive (negative) return:
Pry(ry41 > 0) o logDP,. (1)

This example illustrates that sign prediction can be seen as a simplified version of value prediction
grounded in economic theory. Similarly, other valuation-ratio-related indicators, such as the Dividend
Yield (logDY), Earnings Price Ratio (logEP), Dividend Payout Ratio (logDE), and Book-to-Market
Ratio (BM), among others, can be discussed within the same framework.?

Another intuitively compelling example, viewed from a statistical perspective, is provided by Christof-

fersen and Diebold (2006):

Prt (rt+1 > 0) =1- Prt (Tt+1 S O)

=1—Pr(”+1_“ < _# )
Ot+1|t Ot+1|t

(2)
=¢ (Utfllt) ’

rep1 |~ N (M, Ut2+1|t) :




Figure 1: Signs and Sign Dependence of S&P 500 Excess Returns during
Typical Periods
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Table 4: Out-of-sample Forecasting Results of Direction and Value Prediction

)

Models Accuracy (%) Pos-Acc (%) Neg-Acc (%) F-score R% s (%)

Panel A: Direction Prediction

Logistic 54.91 69.17 . 45.65 -
PCA-Logistic 58.33 79.70 27.11 40.46 -

Lasso 58.78 82.21 24.54 37.80 -
Enet 58.93 82.21 24.91 38.23 -
GBDT 61.01 90.48 17.95 29.96 -

RF 61.31 86.22 24.91 38.65 -

NN 55.80 75.44 9711 39.89 -
T

Avg(uni) 59.38 100.00 0.00 0.00 -

Avg(all) 59.23 83.21 24.18 37.47 -

Avg(linear) 59.08 79.45 29.30 42.81 -

Avg(nonlinear) 9.6 86.97 19.78 32.23 -

Avg(nonlin/NN) 61.61 88.47 22.34 35.67 -
' Panel B: Value Prediction =~

TR 52.08 62.41 w 46.46 ~12.81

\ PCA-LR ) 55.95 70.68 4.4 46.30 —2.56
Lasso 59.38 99.50 0.73 1.45 0.46*(1.60)
Enet 59.23 99.75 0.00 0.00 0.41*(1.60)
GBRT 57.29 85.46 16.12 27.12 —0.45
RF 58.78 82.71 23 8T 36.98 0.06**(1.90)
NN 59.38 100.00 000 0.00 0.16(1.22)
Avg(uni) 59.23 99.75 0.00 0.00 0.21(1.17)
Avg(all) 58.48 89.22 13.55 23.53 0.55**(1.67)
Avg(linear) 55.36 81.45 1722 28.43 —0.09
Avg(nonlinear) 58.63 91.98 989 17.86 0.53**(1.65)
Avg(nonlin/NN) 58.48 84.96 19.78 32.09 —0.01

Panel C: Benchmarks
Historical Mean (HM) 59.38 100.00 0.00 0.00 0.00

Naive All Positive (NAP) 59.38 100.00 0.00 0.00 -
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Table 7: Pairwise Comparison of Utility (Gains between Direction and Value
Strategies

Direction Strategy 1 Direction Strategy 2
A (value) (%) A (value) growth(%) A (value) (%) A (value) growth(%)
No trans. 50bps trans. No trans. 50bps trans. No trans. 50bps trans. No trans. 50bps trans.

Logistic 1.87 1.22 32.60 23.74 2.30 0.76 39.96 14.74
PCA-Logistic 1.17 1.09 16.18 16.85 1.60 0.87 22.19 13.45
Lasso 1.38 1.38 20.42 22.53 1.60 1.10 23.74 18.02
Enet 2.31 2.26 33.92 36.19 2.63 2.00 38.61 32.09
GBDT 0.35 1.80 4.38 31.73 0.27 1.29 3.44 22.68
RF 0.14 1.45 1.57 22.57 0.34 0.92 3.90 14.28
NN 0.93 0.52 16.10 9.96 0.75 —0.14 12.98 —2.75
Avg(uni) 0.71 2.09 10.35 38.07 0.71 2.09 10.35 38.07
Avg(all) —0.43 0.65 —4.86 9.23 —0.70 —0.08 —17.80 —1.16
Avg(linear) 0.53 1.98 6.07 30.64 0.75 1.64 8.64 25.30
Avg(nonlinear) 0.28 1.36 3.60 23.20 0.34 0.93 4.41 15.76
Avg(nonlin/NN) 1.14 2.46 14.82 44.20 1.35 2.26 17.59 40.57

Note: The utility gain A(y,iye) (%) is the difference of the annualized certainty equivalent return gain between direction-based strategy and value-based strategy for
the same model. The A(y,1ye) growth (%) is the percentage change of A(yaiye)-



Table 8: Pairwise Comparison of Utility Gains from the Direction-constrained
Value Strategy

Constrained models Benchmark: Value Strategy Benchmark: Direction Strategy 2
A (value) (%) A(value) growth(%) A (direction2) (%) A (direction2) growth(%)
No trans. 50bps trans. No trans. 50bps trans. No trans. 50bps trans. No trans. 50bps trans.

LR 0.19 0.74 2.36 14.23 0.24 0.09 3.03 1.49
PCA-LR 0.96 0.90 13.97 18.45 —0.96 —1.55 —10.93 —21.13
Lasso 0.85 0.34 12.55 5.50 —0.76 —0.76 —9.04 —10.61
Enet 2.09 1.59 30.76 25.52 —0.53 —0.41 —5.66 —4.97
GBRT -0.11 0.07 —1.43 1.15 —0.39 —1.22 —4.70 —17.55
RF 1.08 1.04 12.61 16.07 0.75 0.11 8.38 1.56
NN —0.21 -1.24 —3.57 —24.05 —0.96 —1.10 —14.65 —21.90
Avg(uni) 0.05 0.05 0.70 0.85 —0.33 —1.06 —4.35 —13.94
Avg(all) —0.42 —0.46 —4.72 —6.51 0.27 —0.38 3.34 —5.41
Avg(linear) 1.07 1.32 12.21 20.36 0.31 —0.32 3.29 -3.94
Avg(nonlinear) 0.96 0.90 12.48 15.25 0.62 —0.03 7.73 —0.44
Avg(nonlin/NN) 1.12 1.19 14.65 21.38 —0.23 -1.07 —2.50 —13.65




Table 10: Out-of-sample Forecasting Results of Direction and Value Predic-
tion with a Subset of Factors

Models with Limited Variables  Accuracy (%)  Pos-Acc (%)  Neg-Acc (%)  F-score R% 05 (%)

Panel A: Direction Prediction

Logistic 55.80 81.45 18.32 14.92 -
PCA-Logistic 58.63 97.24 2.20 2.14 -
Lasso 56.55 85.96 13.55 11.65 -
Enet 55.36 83.21 14.65 12.19 -
GBDT 60.12 93.48 11.36 10.62 -
RF 62.65 89.97 22.71 20.43 -
NN 54.17 75.19 23.44 17.63 -
Avg(uni) 59.38 100.00 0.00 0.00 -
Avg(all) 57.14 88.97 10.62 9.45 -
Avg(linear) 56.99 87.47 12.45 10.89 -
Avg(nonlinear) 58.04 87.72 14.65 12.85 -
Avg(nonlin/NN) 61.31 92.23 16.12 14.87 -
Panel B: Value Prediction
LR 52.23 68.92 27.84 19.19 —-9.84
PCA-LR 55.21 77.19 23.08 17.81 —-0.49
Lasso 59.38 99.25 1.10 1.09 —0.97
Enet 59.38 99.25 1.10 1.09 —0.84
GBRT 56.25 88.47 9.16 8.10 —0.60
RF 56.10 83.46 16.12 13.45 —0.74
NN 59.38 99.75 0.37 0.37 0.23**(1.65)
Avg(uni) 59.38 99.75 0.37 0.37 —0.31
Avg(all) 57.29 92.23 6.23 5.74 —0.39
Avg(linear) 57.89 89.97 10.99 9.89 —1.23
Avg(nonlinear) 56.40 93.48 2.20 2.05 0.08(1.22)
Avg(nonlin/NN) 55.21 85.21 11.36 9.68 —0.56
Panel C: Benchmarks
Historical Mean (HM) 59.38 100.00 0.00 0.00 0.00
Naive All Positive (NAP) 59.38 100.00 0.00 0.00 -

Note: Model name abbreviations are the same as those in Table 4. Clark and West (2007) MSFE-adjusted statistics are included in the
parentheses. *, ** and *** stand for significance at the 10%, 5%, and 1% levels, respectively. Bold numbers in Panel A indicate values
that surpass those of the same model under value prediction in Panel B. Numbers with underlining indicate that they are smaller than
the values at the same positions in Table 4.



Table 11: Pairwise Comparison of Direction and Value Prediction Models
with a Subset of Factors: Utility Gains

Direction Strategy 1 Direction Strategy 2

Is with Limi iabl
Models with Limited Variables A(Value) (%) A(va]ue) growth(%) A(value) (%) A(value) gI'OWth(%)

No trans. 50bps trans. No trans. 50bps trans. No trans. 50bps trans. No trans. 50bps trans.

Panel A: All Models with Limited Factors

Logistic 1.74 3.77 29.79 125.16 1.49 3.73 25.49 123.77
PCA-Logistic 0.14 1.90 1.89 36.75 0.60 2.45 8.33 47.41
Lasso 1.48 1.22 24.42 21.13 1.74 1.63 28.78 28.14
Enet 1.71 1.40 29.54 25.83 2.03 1.97 35.17 36.26
GBDT 1.00 2.61 14.60 54.84 0.74 2.55 10.75 53.59
RF 1.23 2.74 15.78 47.49 -0.17 1.09 -2.17 18.84
NN 0.15 —0.59 2.23 —10.32 0.33 —0.60 5.06 —10.54
Avg(uni) 1.95 2.64 34.74 53.51 1.95 2.64 34.74 53.51
Avg(all) 0.91 1.84 13.94 36.66 0.62 1.93 9.51 38.29
Avg(linear) 1.41 2.69 22.30 60.19 1.02 2.51 16.13 56.14
Avg(nonlinear) 0.63 1.56 9.28 30.80 0.89 2.07 13.21 40.79
Avg(nonlin/NN) 1.11 2.56 15.26 48.34 0.25 1.82 3.47 34.28
Panel B: Value Prediction with Full Set of Variables; Direction Prediction with Limited Factors
Logistic —0.50 1.55 —6.13 29.63 —0.75 1.51 -9.24 28.83
PCA-Logistic 0.46 2.20 6.63 45.01 0.92 2.75 13.37 56.32
Lasso 0.79 0.91 11.63 14.87 1.05 1.31 15.53 21.52
Enet 0.69 0.58 10.11 9.36 1.01 1.15 14.89 18.42
GBDT —0.08 1.70 —1.02 29.91 -0.34 1.64 —4.35 28.86
RF 0.42 2.05 4.87 31.82 —0.98 0.40 —11.38 6.21
NN 0.84 —0.07 14.39 —1.36 1.02 —0.08 17.55 —1.61
Avg(uni) 0.38 1.11 5.28 17.18 0.38 1.11 5.28 17.18
Avg(all) —1.46 -0.15 —16.40 -2.11 —1.75 —0.07 —19.65 —0.95
Avg(linear) —1.02 0.69 —11.73 10.59 —1.41 0.50 —16.19 7.79
Avg(nonlinear) —0.28 0.76 -3.63 12.95 -0.01 1.27 —0.16 21.58

Avg(nonlin/NN) 0.74 2.30 9.66 41.25 —0.12 1.55 —1.56 27.87




Decision Trees (DT)

e Ask questions sequentially. @% 0\

) (petal Ifn:th jcm% <=‘ﬁl
gini = 0.66
sa =150
value = [50, 50, 50]
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petal width (cm) <= 1.75 )
gini=0.5
samples = 100
value = [0, 50, 50]
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DT: the CART training
algorithm

o First, split the samples in 2 subsets using a single feature k and a threshold f,.

e The algorithm searc d 7, that produces the purest subsets (weighted by
o M| eft m\r@ﬂ
their size): J (k, tk) Gleft + Gright
m | m / —=
(_\

e G: the impurity.
e m: number of samples in the left/right subset

* Once it separates the samples into two subsets, it continues to search in the subsets.

* [t stops when either it reaches the maximum depth, or if it cannot find a split that will
reduce impurity.

* The optimal tree is not guaranteed.
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D1: Regularization

e DT is a nonparametric model. H\(j MFW \

e Nonparametric models may tend to overfit, i.e. fitting very close to the training data as
little (or no) presumptions are made.

e To fight against overfitting, use regularization.

X
e max_depth: the maximum level of the tree RIS i
/

— == T

min_samples_split: the minimum number of samples a node must have before it can

besplit

min_samples_leaf: the minimum number of samples a leaf node must have

——

¢ max_leaf nodes: maximum number of leaf nodes

max_features: maximum number of features that are evaluated for splitting at each

\
node.

e pruning: delete leaf nodes if the impurity improvement it provides is not statistically
significant
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DT: regression

M|eft - Mright
. J (k1) = - % — MSEyight
max_depth=2 . Lo max_depth=3

— Yy
. Depth=0
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Depth:=1
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” x1<=0.197
mse = 0.098
samples = 200
\value =0.354 y

\F‘alse

(" x1<=0.772 )
mse = 0.074
samples = 156
\value = 0.259 Y

'

mse =0.013 mse = 0.015
samples = 24 samples = 110
value = 0.552 value = 0.111




No restrictions min_samples_leaf=10




DT: Instability

e Sensitive to small variations in data.

e rotation:
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* removing just one sample from the iris data:

3.0

Petal width

Petal length




Ensemble methods

N g‘(imw%
(}2 restion” (,W/LJA&GB @W tz\?% :
 Wisdom of the Crowd. A classical example by FranC|s Galton N
A
<X,
* In 1908 Galton went to a country fair in Plymout %r{d(m ™
* The weight of an ox is being guessed by around 800 people. ,\%\4
The person who guessed closest to the butchered weight of the
OX won a prize.
lki/“gk
* After the contest Galton collected the tickets on which the ~
people wrote their answers. He found that the average number \%Q
Is 1197 lbs, while the actual weight is 1198 lbs. ]R“*le

* This answer is better than the winner’s answer, or any other
cattle experts at the farr.
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Ensemble: Voting

¢ Random Forest:

e Train a group of Decision Trees on different subset of
the training data.

e Obtain the predictions from all individual trees, and

aggregate them (perhaps by counting the votes for
each class)

* One of the most powerful Machine Learning algorithms



Logistic
Regression

SVM
Classifier

Forest Classifier

Random

Other...

tﬁ:’ Diverse
predictors

¥

Ensemble’s prediction
(e.g., majority vote)

4

R

A\

Predictions

Diverse
predictors




Even each algorithm is weak (slightly better than random
guess), ensembling can make it strong.

Ensembling work best when the classifiers are as
independent from one another as possible.

Hard voting: average counting. Soft voting: average
probability

Soft voting is generally better, because probability is a
weight of confidence.



Bagging and Pasting

e Use the same algorithm on different random subsets of the
training set.

 Sampling with replacement: Bagging, (Boostrap
aggregating)

e without replacement: Pasting

o After resampling, make predictions by aggregation function
such as voting.

* This can be done in parallel, i.e. with multiple CPU cores or
multiple servers. X
J
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Out-of-Bag Validation

By default, resampling size is m for m training samples.

This means that there are about 37% training instances

|
that are not sampled. (1 — —)" =~ 0.37
m

We can use these unseen samples as the validation set

Note that these samples are not the same for different
algorithms.



Random Patches and
Random Subspaces

e Sampling features: Random Subspaces method

e Sampling both training instances and features: Random

Patches method



Even more randomness

e Random Forest: CART but searching the best feature
among a random set of features (instead of all features)

e Extra-Trees (Extremely Randomized Trees): random
threshold for each feature instead of the best possible
threshold.

e More randomness: bias vs. variance

e Also it means faster training.
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Feature Importance

Koo K KRR

e Feature importance: how much the tree nodes that use
that feature reduce impurity on average across all trees in
the forest. Weighted by the number of training samples in
the node.

* This is especially useful because you can quickly get an
idea about what feature is valuable among all randomly
chosen “experts” (trees)
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Boosting

e Train predictors sequentially, each trying to improve
based upon its predecessor’s work

 AdaBoost: pay more attention to the training instances
that the predecessor underfitted. Focus more and more
on the hard cases.
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Adaboost

. |
. Each sample’s weight w is initially set to —
m
Yzt w?
) £ (@) ,
YT NOY .th . , . th -
r; = where y;is the j— predictor's prediction for the 1™ instance.

o J m i
Zi:l w@
e The higher i, the worse the predictor

L=

. o =1nlog ”
J

J the higher i the lower ;. The better the predictor, the higher ;.



 Weight update rule:

fori=1,2,:---,m

(1) o) — ()
| w if y.\/ =y
W(z) < ¢ J

w') exp ( ) if y](’) =y

\

e Finally,

y(X) = argmax Z a; where NV is the number of predictors.

k i=1
yi(x) =k



Gradient Boosting

* Fit new predictors to the residual errors made by the previous predictor

e tree_reg1 = DecisionTreeRegressor(max_depth=2)
tree_reg1.fit(X, y)
y2 =y - tree_reg1.predict(X)

—

e tree_reg2 = DecisionTreeRegressor(max_depth=2)
tree_reg?2.fit(X, y2)
y3 = y2 - tree_reg2.predict(X)
o \\
* tree_reg3 = DecisionTreeRegressor(max_depth=2)
tree_reg3.fit(X, y3)

e y pred = sum(tree.predict(X_new) for tree in (tree_reg1, tree_reg2, tree_reg3))

* Early stopping can be useful to determine how many trees are needed.
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e Early stopping
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e Stochastic Gradient Boosting: choose a random s

Instances for each tree.

e Check XGBoost
= x? LM

{K\W“ ,

Lgt 22—

Crradiot  Bote
aa(

w‘\gm\\

(klbset of

YL@S\\@’\ TR

(GBWT
¢,


Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao

Bo Zhao


g (fi,-Jm)

Stacking .

Instead of using simple rules when aggregating, such as
voting, why not using a model to aggregate?

Split the training data into two subsets.

Train several models (the more different the better) on the
first subsets. For example, train 3 models, one is linear
regression, one is random forest, etc.

Evaluate the models on the second subset. For each
instance, we then have 3 predictions.

Train a meta-model on this data (with 3 features)
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/ eta Model
Prediction

&

Meta Model
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Holdouit Data

Lower Model
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Fig. 1. Structure of stacking.
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Training Data

Panel A: The Training-Validation-Testing Framework
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Support Vector Machines

o Particularly useful for classification of complex, but small
or medium sized data

* |dea: separate classes with wide margin instead of narrow
ones.
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. Figure 5-1. Large margin classification

e adding new instances off the ‘street’ won’t help.

e The instances on the edge of the street are called ‘support vectors’.
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o Sensitive to feature scales

Unscaled
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Neural Networks
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Perceptron
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 The step functions “activates” the neuron

e Common step functions:

-1 ifz<0
heaviside (z) = ¢ 0ifz< 0 sgn(z) =<0 ifz=20
+1 ifz2>0



* Fully connected layer (dense layer):.
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* This simple structure of perceptrons has some weaknesses. Minsky
and Papert (1969). It cannot solve the simple Exclusive OR (XOR)
problem.

* By then people had put much faith in Neural Networks, this hurts them
a lot. For a long time Neural Networks is neglected. People working in
NN had no much respect among researchers in Artificial Intelligence.
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The Universal Approximation Theorem is a fundamental result in machine learning and ral networks.
heorem I S ab G

NN

A feedforward neural network with a single hidden layer containing a finite number of neurons can
—
approximate any continuous function on a compact subset of R", as closely as desired, provided

—_— . . \
Roughly speaking, it says:

_—
the activation function is sufficiently "nice" (e.g., nonconstant, bounded, and continuous).
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Multi-Layer Perceptron

e But stacking perceptrons can be helpful
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Cybenko (1989), "Approximation by superpositions of a sigmoidal
function”

Hornik (1991), "Approximation capabilities of multilayer feedforward
networks”

Lu et al. (2017), "Expressive Power of Neural Networks”
Telgarsky (2016), "Benefits of Depth in Neural Networks”

S

Eldan and Shamir (2016), "The Power of Depth for Feedforward Neural
Networks”

Raghu et al. (2017), "On the Expressive Power of Deep Neural Networks”
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e KEY INNOVATION: The VERY HARD task of constructing X (features), finding
the “correct” functional forms is transformed into —> constructing a neural
networks; wait and see.

 But now the problem is: which neural networks? l.e., can we find a structure
that can approximate EFFICIENTLY (less computational power, fast
convergence, better performance)?

* |t becomes @melem. Try fancy (but now it can be vague —
intuitively this structure may capture some features of the data) ideas and

wait and see.

e Still waiting for the next breakthrough: What is real intelligence? l.e., what
makes a human intelligent? How different is human being different from

animals?... W)\M‘ /—/ (w,%

* Neuroscience, biology, and more
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Training In NN

e Especially difficult.
e |In 1986, Rumelhart, Hinton, Williams (1986) introduced backpropagation.
e The idea:

e Forinstances in each mini-batch, feed it into the network and computes the output of
each neuron in each layer (just make predictions)

e Measure the output error

e evaluate the last layers’ neuron’s contribution to the error of each output neuron
(gradient descent)

e evaluate the previous hidden layers’ neuron’s contribution to these error contributions
of the last layers’ neurons.

e update the weight of all connections using the error gradients

e sO on and so forth



* |n order for the gradients to work, the authors replace the
step functions with the logistic function,

o(z) = 1/(1 4+ exp(—2))

 Other popular activation functions:
o tanh(z) = 20(27) — 1

e ReLU: ReLU(z) = max(z,0)



NN for regression: just keep one output neuron with (perhaps) the identity
function as the activation

NN for classification: for binary problems, use one output neuron with
logistic function as the activation. For multiple classes, use several neurons.

Image and videos (non-structural or non-tabular data): Convoluted Neural
Networks

Natural Language Processing (with a time series component): Recurrent
Neural Networks

Transformer

Packages for doing NN: Tensorflow (keras), Pytorch.



What's next

e |earning by doing

 Check: scikit-learn, XGBoost, LightGBM, Tensorflow
(keras), Pytorch

e Start doing something immediately. For example,
MNIST, IRIS, California housing prices, TITANIC, Image
classification etc.

* Apply to your own problems: predicting stock returns,
stock volatilities, default probabilities, fraud detection,



Resources

www.kaggle.com

Stanford’s courses on Computer Vision, Natural Language
Processing, etc.

Coursera


http://www.kaggle.com
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