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什么是机器学习？

• The science (and art) of programming computers so they 
can learn from data.


• [Machine Learning is the] field of study that gives 
computers the ability to learn without being explicitly 
programmed.  —Arthur Samuel, 1959


• A computer program is said to learn from experience E 
with respect to some task T and some performance 
measure P, if its performance on T, as measured by P, 
improves with experience E.  — Tom Mitchell, 1997



机器学习 vs. 传统⼈⼯智能
• 传统⼈⼯智能：编程制定规则


• 机器学习：定义⽬标（loss function，⽐如最⼩化MSE），计算机从
数据中学习规则


• 例：识别垃圾邮件。


• 传统⼈⼯智能：观察垃圾邮件特点，⽐如常⻅词：4U, free, 
amazing, 优惠，限时，抽奖…，建模。


• 机器学习：标注⼤量垃圾邮件和⾮垃圾邮件，⽽⾮直接对邮件特点
建模。⾃动识别垃圾邮件的特点（在给定的模型空间⾥选择模型）



• 传统⼈⼯智能：


•



• 机器学习：


•



什么是计量经济学？
• 提出模型（根据常识、经济学、⾦融学理论，也即 field knowledge）


• 根据模型的特点设计估计⽅法（Robust errors、GLS、IV、Structural models, GMM、Panel、DID、PSM…）


• 对模型的结果进⾏评价


• ⾸先要符合常识  




• 其次，研究者想表达的故事到底⾯临哪些问题？


• 现代计量经济学经历了“因果识别”的⾰命。


• 本质上：从 structural form —> reduced form


• 模型本身到底对还是不对？⽆法从数据给出的结果中知道



•  

 

 



机器学习 vs. 计量经济学 

• Arthur Lewbel: 





• Tom Sargent: http://www.elecfans.com/d/748807.html  




• ⾦榕：https://tech.sina.com.cn/it/2018-08-20/doc-
ihhxaafz3934293.shtml

http://www.elecfans.com/d/748807.html
https://tech.sina.com.cn/it/2018-08-20/doc-ihhxaafz3934293.shtml
https://tech.sina.com.cn/it/2018-08-20/doc-ihhxaafz3934293.shtml
https://tech.sina.com.cn/it/2018-08-20/doc-ihhxaafz3934293.shtml


•

Susan Athey:



•



• Hal Varian:


•



• 我的看法：


• 机器学习不完全是只看相关性⽽不看因果联系。


• 机器学习越来越关注因果联系。https://www.microsoft.com/en-us/
research/group/causal-inference/ 


• 以前的计量经济学时常混淆因果问题与预测问题，现在逐渐清晰


• 因果联系问题本身极其复杂，经济学的问题本身很难被证伪


• 现在的LLM(ChatGPT等)是否有“独⽴”意识？


• 注意“基准”


• 机器学习和计量经济学的最⼤差别在于：怎样评估结果



评估模型好坏

• 计量经济学：对模型本身的评价只能由field knowledge⽽
来。样本内的显著性。样本外的评估⽐较困难。


• 机器学习：模型在未⻅过的新数据上表现怎么样？


• 关键假设：训练数据和未⻅过的新数据性质相同（iid, 
stationarity, etc.）


• 如果data generating process改变，则已有的模型会失效



• Testing and Validating


• Split the data into Training Set and Test Set. 


• Within Training Set, further split the data into Reduced 
Training and Validation Sets. Why?


• Train on the Reduced Training Sets, tune hyperparameters 
on the Validation Set


• Then train on the full training set


• Apply the model to the test set



• Types


• Holdout


• K-Fold


• Leave-one-out


• Time series


• Grid search


• Testing and Validating is tricky when the DGP is ever changing.



⽤词差别

• Econometrics vs. ML


• Control variables, Covariates vs. Features


• Estimation vs. Training


• …



机器学习类别

• 是否有⼈类监督（打标签）?


• Supervised,  Unsupervised, semisupervised, 
Reinforcement Learning


• 批量学习(batch learning)还是即时学习(online learning)？


• 以上分类可有交集



Supervised vs. 
Unsupervised

• Supervised learning: human labeled desired solutions.


• Classification: spam or ham


• Regression: numerical value is labeled


• Unsupervised learning: no human attached labels. 


• Clustering: detect groups


• dimensionality reduction: simplify the data without losing too much 
information


• Anomaly detection: detecting unusual credit card transactions


• Association rule learning: supermarket transactions



Semisupervised learning

• Usually lots of unlabeled data, a little bit of labeled data.


• People in photos: detecting people in photos 
(unsupervised), needs you to tell it who them are 
(supervised)



Reinforcement learning

• The ‘agent’ (learning system), observes the ‘environment’, 
perform an ‘action’, and get ‘rewards’.


• must learn a series of ‘actions’ under different 
‘environments’, where the ‘actions’ might affect the 
‘environment’ in which the ‘agent’ is in.


• Not necessarily deep



Batch and Online Learning

• Batch learning: the model must be trained using all 
available data. When launched, it cannot learn new data.


• If you want to update the system, you need to train 
once again with all data.


• Online learning: feed new data sequentially, individually or 
by small groups (mini-batches)


• learning rate: how fast should the machine learn?



Bias vs. Variance, Underfit 
vs. Overfit

• MSE = Bias^2 + Variance + Irreducible error


• Some confusions in the decomposition


• In econometrics:  



• in ML:



• Bias: wrong assumptions of the set of models, e.g. 
assuming linear model while it is actually nonlinear. Underfit.


• In econometrics, I think it’s very likely that in many cases 
the model is misspecified; However, a linear projection is 
not necessarily “wrong”. It can still “explain” as a linear 
approximation, which is in line with mundane intuition.


• Variance: model’s excessive sensitivity to small variations in 
the training data.


• Irreducible error: randomness of the data.



•



The workflow
• Get data


• Exploratory Data Analysis


• Correlations


• Plots


• Clean data


• Define validation strategy


• Feature engineering


• Modelling


• Ensembling



Training models

• Gradient Descent


• Batch Gradient Descent


• Stochastic Gradient Descent


• Mini-batch Gradient Descent


• …



Gradient descent
• 


• The computation complexity of inverting an K*K matrix is 
about  to 


• Gradient descent:


• initialize  with random values


• improve it bit by bit recursively, until the object function 
(MSE) reaches the minimum

̂θ = (XTX)−1 XTy

O(K2.4) O(K3)

̂β



• 


• 


•

̂θ next
j := ̂θ j − α

∂

∂ ̂θ j

J ( ̂θ 0, ̂θ 1)

̂θnext = ̂θ − α∇θMSE( ̂θ )



Intuition

•



•



•



Batch GD
• 


• 


•



• 


• When updating EACH , we have looked at ALL m observations ( ), and taking average ( ). 

In other words, we use the whole BATCH of training data at every step. SLOW if m is large. 

MSE(X, θ) =
1
m

m

∑
i=1

(θTx(i) − y(i))2

∂
∂θj

MSE(θ) =
2
m

m

∑
i=1

(θTx(i) − y(i)) x(i)
j

∇θMSE(θ) =

∂
∂θ0

MSE(θ)
∂

∂θ1
MSE(θ)

⋮
∂

∂θn
MSE(θ)

=
2
m

XT(Xθ − y)

̂θnext = ̂θ − α∇θMSE( ̂θ )

θ XT(Xθ − y)
1
m



Stochastic Gradient 
Descent

• Randomly pick one instance (observation) in the training set


• Compute the gradients based only on this single instance


•



• Update 

∇θMSE(θ) =

∂
∂θ0

MSE(θ)
∂

∂θ1
MSE(θ)

⋮
∂

∂θn
MSE(θ)

= 2 (θTx(i) − y(i)) x(i)

̂θ





Mini-batch Gradient 
Descent

• Each round of updating, look at a small random set of instances called Mini-Batch.


• Some notations that might be a bit confusing:


• iteration: each time you update your coefficient estimates


• batch-size: the size of the instances you choose to look at before updating


• epoch: One epoch means you have looked at all samples once. But it does not necessarily 
equal to m, it could be a number defined by yourself.


• Example: 1000 instances 


• Divide into 10 batches


• batch-size = 100


• 1 iteration: update  once, i.e. uses 100 instances


• 1 epoch: when you have trained the model on all 10 batches

̂θ



Models
• No Free Lunch Theorem


• model: a simplified version of descriptions


• the simplifications are meant to discard superfluous details that are unlikely to 
generalize to new instances


• to decide what to be kept, you make assumptions


• Wolpert (1996): if you make absolutely no assumption about the data, then there is no 
model dominating other models.


• the only way to know for sure which model is best is to test them all. 


• But this is impossible. 


• So you have to make assumptions, and evaluate those models that seems to fit 
these assumptions



Popular models
• State of the art:


• Linear models: good for sparse high dimensional data


• Tree-based models: very powerful, often to be the 
default method for tabular data


• Ensembling


• Image, video, language: Neural Networks (Deep 
Learning)



Model Regularization
• A good way to fight against overfitting: constrain the 

model in some way.


• Linear Model Examples:


• Ridge Regression: . Use 

this loss function during training. Afterwards, use the 
original linear model(The loss and the evaluation 
metrics are different). : hyperparameter

J(θ) = MSE(θ) + α
1
2

n

∑
i=1

θ2
i

α





• Least Absolute Shrinkage and Selection Operator (Lasso) 
Regression: 


• Lasso tends to completely eliminate the weights of the 
least important features. A kind of feature selection.


• Elastic Net: 

J(θ) = MSE(θ) + αΣn
i=1 θi

J(θ) = MSE(θ) + rα
n

∑
i=1

θi +
1 − r

2
αΣn

i=1θ
2
i



• Early stopping


•



Classification problems: 
Logistic regression in ML

• Loss function (log-likelihood function): 




• , 


• Training: gradient descent. 

J(θ) = −
1
m

Σm
i=1 [y(i) log ( ̂p(i)) + (1 − y(i)) log (1 − ̂p(i))]

̂p = σ (xTθ) σ(t) =
1

1 + exp(−t)

∂
∂θj

J(θ) =
1
m

m

∑
i=1

(σ (θTx(i)) − y(i)) x(i)
j



• Multiclass classification: Softmax Regression


• Softmax score for class : 


• The estimated probability of  belonging to class : 




• prediction: 


• The loss function: . This is called  

Cross Entropy Loss Function, or simply log loss

k sk(x) = xTθ(k)

x k

̂pk = σ(s(x))k =
exp (sk(x))

∑K
j=1 exp (sj(x))

̂y = argmax
k

σ(s(x))k

J(Θ) = −
1
m

Σm
i=1Σ

K
k=1y

(i)
k log ( ̂p(i)

k )



A short note on the log loss 
function

• Shannon (1948). The beginning of Information Theory. 


• Bit = 0 or 1.


• Bit = Uncertainty divided by 2. 


• Entropy: 


• Cross Entropy: 


• Cross Entropy = Entropy + KL Divergence

H(p) = − Σk pk log2 (pk)
H(p, q) = − Σkpk log2 (qk)
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A recent working paper of mine: Direction is more Important  than Speed.  
https://ssrn.com/abstract=5176925

https://ssrn.com/abstract=5176925
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Decision Trees (DT)
• Ask questions sequentially.


•
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DT: the CART training 
algorithm

• First, split the samples in 2 subsets using a single feature  and a threshold . 


• The algorithm searches  and  that produces the purest subsets (weighted by 

their size): 


• : the impurity. 


• : number of samples in the left/right subset


• Once it separates the samples into two subsets, it continues to search in the subsets.


• It stops when either it reaches the maximum depth, or if it cannot find a split that will 
reduce impurity.


• The optimal tree is not guaranteed.

k tk

k tk
J (k, tk) =

mleft 
m

Gleft  +
mright 

m
Gright 

G

m

Bo Zhao
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DT: Regularization
• DT is a nonparametric model. 


• Nonparametric models may tend to overfit, i.e. fitting very close to the training data as 
little (or no) presumptions are made. 


• To fight against overfitting, use regularization.


• max_depth: the maximum level of the tree


• min_samples_split: the minimum number of samples a node must have before it can 
be split


• min_samples_leaf: the minimum number of samples a leaf node must have


• max_leaf_nodes: maximum number of leaf nodes


• max_features: maximum number of features that are evaluated for splitting at each 
node.


• pruning: delete leaf nodes if the impurity improvement it provides is not statistically 
significant
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DT: regression

• J (k, tk) =
mleft 

m
MSEleft  +

mright 
m

MSEright 

Bo Zhao



•



•



DT: Instability

• Sensitive to small variations in data.


• rotation: 



• removing just one sample from the iris data:


•



Ensemble methods
• Wisdom of the Crowd. A classical example by Francis Galton:


• In 1908 Galton went to a country fair in Plymouth


• The weight of an ox is being guessed by around 800 people. 
The person who guessed closest to the butchered weight of the 
ox won a prize.


• After the contest Galton collected the tickets on which the 
people wrote their answers. He found that the average number 
is 1197 lbs, while the actual weight is 1198 lbs. 


• This answer is better than the winner’s answer, or any other 
cattle experts at the fair.
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Ensemble: Voting

• Random Forest: 


• Train a group of Decision Trees on different subset of 
the training data. 


• Obtain the predictions from all individual trees, and 
aggregate them (perhaps by counting the votes for 
each class)


• One of the most powerful Machine Learning algorithms



•



• Even each algorithm is weak (slightly better than random 
guess), ensembling can make it strong. 


• Ensembling work best when the classifiers are as 
independent from one another as possible. 


• Hard voting: average counting. Soft voting: average 
probability


• Soft voting is generally better, because probability is a 
weight of confidence. 



Bagging and Pasting
• Use the same algorithm on different random subsets of the 

training set. 


• Sampling with replacement: Bagging, (Boostrap 
aggregating)


• without replacement: Pasting


• After resampling, make predictions by aggregation function 
such as voting.


• This can be done in parallel, i.e. with multiple CPU cores or 
multiple servers.

Bo Zhao



Out-of-Bag Validation

• By default, resampling size is  for  training samples.


• This means that there are about 37% training instances 

that are not sampled. 


• We can use these  unseen samples as the validation set


• Note that these samples are not the same for different 
algorithms.

m m

(1 −
1
m

)m ≈ 0.37



Random Patches and 
Random Subspaces

• Sampling features: Random Subspaces method


• Sampling both training instances and features: Random 
Patches method



Even more randomness

• Random Forest: CART but searching the best feature 
among a random set of features (instead of all features)


• Extra-Trees (Extremely Randomized Trees): random 
threshold for each feature instead of the best possible 
threshold.


• More randomness: bias vs. variance


• Also it means faster training.

Bo Zhao



Feature Importance

• Feature importance: how much the tree nodes that use 
that feature reduce impurity on average across all trees in 
the forest. Weighted by the number of training samples in 
the node.


• This is especially useful  because you can quickly get an 
idea about what feature is valuable among all randomly 
chosen “experts” (trees)

Bo Zhao

Bo Zhao



Boosting

• Train predictors sequentially, each trying to improve 
based upon its predecessor’s work


• AdaBoost: pay more attention to the training instances 
that the predecessor underfitted. Focus more and more 
on the hard cases.
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Adaboost
• Each sample’s weight  is initially set to 


• 


• The higher  , the worse the predictor


• 


• : the higher , the lower . The better the predictor, the higher .

w(i) 1
m

rj =

∑m
i = 1

̂y(i)
j ≠ y(i)

w(i)

∑m
i=1 w(i)

 where  ̂y(i)
j  is the jth predictor's prediction for the ith instance. 

rj

αj = η log
1 − rj

rj

αj rj αj αj



• Weight update rule:  
 




• Finally,  

̂y(x) = argmax
k

N

∑
j = 1

̂yj(x) = k

αj where N is the number of predictors. 



Gradient Boosting
• Fit new predictors to the residual errors made by the previous predictor


• tree_reg1 = DecisionTreeRegressor(max_depth=2)  
tree_reg1.fit(X, y) 
y2 = y - tree_reg1.predict(X)


• tree_reg2 = DecisionTreeRegressor(max_depth=2)  
tree_reg2.fit(X, y2) 
y3 = y2 - tree_reg2.predict(X)


• tree_reg3 = DecisionTreeRegressor(max_depth=2)  
tree_reg3.fit(X, y3)


• y_pred = sum(tree.predict(X_new) for tree in (tree_reg1, tree_reg2, tree_reg3))


• Early stopping can be useful to determine how many trees are needed.

Bo Zhao





• Early stopping

• Stochastic Gradient Boosting: choose a random subset of 
instances for each tree. 


• Check XGBoost
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Stacking
• Instead of using simple rules when aggregating, such as 

voting, why not using a model to aggregate?


• Split the training data into two subsets.


• Train several models (the more different the better) on the 
first subsets. For example, train 3 models, one is linear 
regression, one is random forest, etc.


• Evaluate the models on the second subset. For each 
instance, we then have 3 predictions.


• Train a meta-model on this data (with 3 features)
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Support Vector Machines

• Particularly useful for classification of complex, but small 
or medium sized data


• Idea: separate classes with wide margin instead of narrow 
ones.



• 


• adding new instances off the ‘street’ won’t help.


• The instances on the edge of the street are called ‘support vectors’.
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• Sensitive to feature scales


•
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Neural Networks





Perceptron
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• The step functions “activates” the neuron


• Common step functions:



• Fully connected layer (dense layer): 
 

• This simple structure of perceptrons has some weaknesses. Minsky 
and Papert (1969). It cannot solve the simple Exclusive OR (XOR) 
problem. 


• By then people had put much faith in Neural Networks, this hurts them 
a lot. For a long time Neural Networks is neglected.  People working in 
NN had no much respect among researchers in Artificial Intelligence.
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Multi-Layer Perceptron
• But stacking perceptrons can be helpful 

 



• Cybenko (1989), "Approximation by superpositions of a sigmoidal 
function”


• Hornik (1991), "Approximation capabilities of multilayer feedforward 
networks”


• Lu et al. (2017), "Expressive Power of Neural Networks”


• Telgarsky (2016), "Benefits of Depth in Neural Networks”


• Eldan and Shamir (2016), "The Power of Depth for Feedforward Neural 
Networks”


• Raghu et al. (2017), "On the Expressive Power of Deep Neural Networks”

Bo Zhao



• KEY INNOVATION: The VERY HARD task of constructing X (features), finding 
the “correct” functional forms is transformed into —> constructing a neural 
networks; wait and see.


• But now the problem is: which neural networks? I.e., can we find a structure 
that can approximate EFFICIENTLY (less computational power, fast 
convergence, better performance)?


• It becomes a Lego problem. Try fancy (but now it can be vague — 
intuitively this structure may capture some features of the data) ideas and 
wait and see.


• Still waiting for the next breakthrough: What is real intelligence? I.e., what 
makes a human intelligent? How different is human being different from 
animals?…


• Neuroscience, biology, and more

Bo Zhao
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Training in NN
• Especially difficult. 


• In 1986, Rumelhart, Hinton, Williams (1986) introduced backpropagation. 


• The idea: 


• For instances in each mini-batch, feed it into the network and computes the output of 
each neuron in each layer (just make predictions)


• Measure the output error 


• evaluate the last layers’ neuron’s contribution to the error of each output neuron 
(gradient descent)


• evaluate the previous hidden layers’ neuron’s contribution to these error contributions 
of the last layers’ neurons. 


• update the weight of all connections using the error gradients


• so on and so forth



• In order for the gradients to work, the authors replace the 
step functions with the logistic function,  
 




• Other popular activation functions: 


• 


• ReLU:  

σ(z) = 1/(1 + exp(−z))

tanh(z) = 2σ(2z) − 1

ReLU(z) = max(z,0)



• NN for regression: just keep one output neuron with (perhaps) the identity 
function as the activation


• NN for classification: for binary problems, use one output neuron with 
logistic function as the activation. For multiple classes, use several neurons. 


• Image and videos (non-structural or non-tabular data): Convoluted Neural 
Networks


• Natural Language Processing (with a time series component): Recurrent 
Neural Networks


• Transformer


• Packages for doing NN: Tensorflow (keras), Pytorch.



What’s next
• Learning by doing


• Check: scikit-learn, XGBoost, LightGBM, Tensorflow 
(keras), Pytorch


• Start doing something immediately. For example, 
MNIST, IRIS, California housing prices, TITANIC, Image 
classification etc.


• Apply to your own problems: predicting stock returns, 
stock volatilities, default probabilities, fraud detection,  
…



Resources

• www.kaggle.com


• Stanford’s courses on Computer Vision, Natural Language 
Processing, etc. 


• Coursera


• …

http://www.kaggle.com
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